
7. Quantization of the Harmonic Oscillator –
Ariadne’s Thread in Quantization

Whoever understands the quantization of the harmonic oscillator can un-
derstand everything in quantum physics.

Folklore

Almost all of physics now relies upon quantum physics. This theory was
discovered around the beginning of this century. Since then, it has known
a progress with no analogue in the history of science, finally reaching a
status of universal applicability.
The radical novelty of quantum mechanics almost immediately brought a
conflict with the previously admitted corpus of classical physics, and this
went as far as rejecting the age-old representation of physical reality by
visual intuition and common sense. The abstract formalism of the theory
had almost no direct counterpart in the ordinary features around us, as,
for instance, nobody will ever see a wave function when looking at a car
or a chair. An ever-present randomness also came to contradict classical
determinism.1

Roland Omnès, 1994

Quantum mechanics deserves the interest of mathematicians not only be-
cause it is a very important physical theory, which governs all microphysics,
that is, the physical phenomena at the microscopic scale of 10−10m, but
also because it turned out to be at the root of important developments of
modern mathematics.2

Franco Strocchi, 2005

In this chapter, we will study the following quantization methods:

• Heisenberg quantization (matrix mechanics; creation and annihilation operators),
• Schrödinger quantization (wave mechanics; the Schrödinger partial differential

equation),
• Feynman quantization (integral representation of the wave function by means of

the propagator kernel, the formal Feynman path integral, the rigorous infinite-
dimensional Gaussian integral, and the rigorous Wiener path integral),

• Weyl quantization (deformation of Poisson structures),

1 From the Preface to R. Omnès, The Interpretation of Quantum Mechanics,
Princeton University Press, Princeton, New Jersey, 1994. Reprinted by permis-
sion of Princeton University Press. We recommend this monograph as an intro-
duction to the philosophical interpretation of quantum mechanics.

2 F. Strocchi, An Introduction to the Mathematical Structure of Quantum Me-
chanics: A Short Course for Mathematicians, Lecture Notes, Scuola Normale,
Pisa (Italy). Reprinted by permission of World Scientific Publishing Co. Pte.
Ltd. Singapore, 2005.
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• Weyl quantization functor from symplectic linear spaces to C∗-algebras,
• Bargmann quantization (holomorphic quantization),
• supersymmetric quantization (fermions and bosons).

We will choose the presentation of the material in such a way that the
reader is well prepared for the generalizations to quantum field theory to
be considered later on.

Formally self-adjoint operators. The operator A : D(A) → X on the complex
Hilbert space X is called formally self-adjoint iff the operator is linear, the domain
of definition D(A) is a linear dense subspace of the Hilbert space X, and we have
the symmetry condition

〈χ|Aϕ〉 = 〈Aχ|ϕ〉 for all χ, ψ ∈ D(A).

Formally self-adjoint operators are also called symmetric operators. The following
two observations are crucial for quantum mechanics:

• If the complex number λ is an eigenvalue of A, that is, there exists a nonzero
element ϕ ∈ D(A) such that Aϕ = λϕ, then λ is a real number. This follows
from λ = 〈ϕ|Aϕ〉 = 〈Aϕ|ϕ〉 = λ†.

• If λ1 and λ2 are two different eigenvalues of the operator A with eigenvectors ϕ1

and ϕ2, then ϕ1 is orthogonal to ϕ2. This follows from

(λ1 − λ2)〈ϕ1|ϕ2〉 = 〈Aϕ1|ϕ2〉 − 〈ϕ1|Aϕ2〉 = 0.

In quantum mechanics, formally self-adjoint operators represent formal observables.

For a deeper mathematical analysis, we need self-adjoint operators, which
are called observables in quantum mechanics.

Each self-adjoint operator is formally self-adjoint. But, the converse is not true. For
the convenience of the reader, on page 683 we summarize basic material from func-
tional analysis which will be frequently encountered in this chapter. This concerns
the following notions: formally adjoint operator, adjoint operator, self-adjoint oper-
ator, essentially self-adjoint operator, closed operator, and the closure of a formally
self-adjoint operator. The reader, who is not familiar with this material, should
have a look at page 683. Observe that, as a rule, in the physics literature one does
not distinguish between formally self-adjoint operators and self-adjoint operators.
Peter Lax writes:3

The theory of self-adjoint operators was created by John von Neumann to
fashion a framework for quantum mechanics. The operators in Schrödin-
ger’s theory from 1926 that are associated with atoms and molecules
are partial differential operators whose coefficients are singular at certain
points; these singularities correspond to the unbounded growth of the force
between two electrons that approach each other. . . I recall in the summer
of 1951 the excitement and elation of von Neumann when he learned that
Kato (born 1917) has proved the self-adjointness of the Schrödinger oper-
ator associated with the helium atom.4

3 P. Lax, Functional Analysis, Wiley, New York, 2003 (reprinted with permis-
sion). This is the best modern textbook on functional analysis, written by a
master of this field who works at the Courant Institute in New York City. For
his fundamental contributions to the theory of partial differential equations in
mathematical physics (e.g., scattering theory, solitons, and shock waves), Peter
Lax (born 1926) was awarded the Abel prize in 2005.

4 J. von Neumann, General spectral theory of Hermitean operators, Math. Ann.
102 (1929), 49–131 (in German).
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And what do the physicists think of these matters? In the 1960s Friedrichs5

met Heisenberg and used the occasion to express to him the deep gratitude
of the community of mathematicians for having created quantum mechan-
ics, which gave birth to the beautiful theory of operators in Hilbert space.
Heisenberg allowed that this was so; Friedrichs then added that the math-
ematicians have, in some measure, returned the favor. Heisenberg looked
noncommittal, so Friedrichs pointed out that it was a mathematician, von
Neumann, who clarified the difference between a self-adjoint operator and
one that is merely symmetric.“What’s the difference,” said Heisenberg.

As a rule of thumb, a formally self-adjoint (also called symmetric) differential op-
erator can be extended to a self-adjoint operator if we add appropriate boundary
conditions. The situation is not dramatic for physicists, since physics dictates the
‘right’ boundary conditions in regular situations. However, one has to be careful.
In Problem 7.19, we will consider a formally self-adjoint differential operator which
cannot be extended to a self-adjoint operator.

The point is that self-adjoint operators possess a spectral family which al-
lows us to construct both the probability measure for physical observables
and the functions of observables (e.g., the propagator for the quantum dy-
namics).

In general terms, this is not possible for merely formally self-adjoint operators.
The following proposition displays the difference between formally self-adjoint and
self-adjoint operators.

Proposition 7.1 The linear, densely defined operator A : D(A) → X on the com-
plex Hilbert space X is self-adjoint iff it is formally self-adjoint and it always follows
from

〈ψ|Aϕ〉 = 〈χ|ϕ〉
for fixed ψ, χ ∈ X and all ϕ ∈ D(A) that ψ ∈ D(A).

Therefore, the domain of definition D(A) of the operator A plays a critical role.
The proof will be given in Problem 7.7.

Unitary operators. As we will see later on, for the quantum dynamics, unitary
operators play the decisive role. Recall that the operator U : X → X is called
unitary iff it is linear, bijective, and it preserves the inner product, that is,

〈Uχ|Uϕ〉 = 〈χ|ϕ〉 for all χ, ϕ ∈ X.

This implies ||Uϕ|| = ||ϕ|| for all ϕ ∈ X. Hence

||U || := sup
||ϕ||≤1

||Uϕ|| = 1

if we exclude the trivial case X = {0}.
The shortcoming of the language of matrices noticed by von Neu-

mann. Let A : D(A) → X and B : D(B) → X be linear, densely defined, formally

J. von Neumann, Mathematical Foundations of Quantum Mechanics (in Ger-
man), Springer, Berlin, 1932. English edition: Princeton University Press, 1955.
T. Kato, Fundamental properties of the Hamiltonian operators of Schrödinger
type, Trans. Amer. Math. Soc. 70 (1951), 195–211.

5 Schrödinger (1887–1961), Heisenberg (1901–1976), Friedrichs (1902–1982), von
Neumann (1903–1957), Kato (born 1917).
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self-adjoint operators on the infinite-dimensional Hilbert space X. Let ϕ0, ϕ1, ϕ2, . . .
be a complete orthonormal system in X with ϕk ∈ D(A) for all k. Set

ajk := 〈ϕj |Aϕk〉 j, k = 0, 1, 2, . . .

The way, we assign to the operator A the infinite matrix (ajk). Similarly, for the
operator B, we define

bjk := 〈ϕj |Bϕk〉 j, k = 0, 1, 2, . . .

Suppose that the operator B is a proper extension of the operator A. Then

ajk = bjk for all j, k = 0, 1, 2, . . . ,

but A �= B. Thus, the matrix (ajk) does not completely reflect the properties of
the operator A. In particular, the matrix (ajk) does not see the crucial domain of
definition D(A) of the operator A. Jean Dieudonné writes:6

Von Neumann took pains, in a special paper, to investigate how Hermitean
(i.e., formally self-adjoint) operators might be represented by infinite ma-
trices (to which many mathematicians and even more physicists were sen-
timentally attached) . . . Von Neumann showed in great detail how the lack
of “one-to-oneness” in the correspondence of matrices and operators led to
their weirdest pathology, convincing once for all the analysts that matrices
were a totally inadequate tool in spectral theory.

7.1 Complete Orthonormal Systems

A complete orthonormal system of eigenstates of an observable (e.g., the
energy operator) cannot be extended to a larger orthonormal system of
eigenstates.

Folklore

Basic question. Let H : D(H) → X be a formally self-adjoint operator on the
infinite-dimensional separable complex Hilbert space X. Physicists have invented
algebraic methods for computing eigensolutions of the form

Hϕn = Enϕn, n = 0, 1, 2, . . . (7.1)

The idea is to apply so-called ladder operators which are based on the use of com-
mutation relations (related to Lie algebras or super Lie algebras). We will encounter
this method several times. In terms of physics, the operator H describes the energy
of the quantum system under consideration. Here, the real numbers E0, E1, E2, . . .
are the energy values, and ϕ0, ϕ1, ϕ2, . . . are the corresponding energy eigenstates.
Suppose that ϕ0, ϕ1, ϕ2, . . . is an orthonormal system, that is,

〈ϕk|ϕn〉 = δkn, k, n = 0, 1, 2, . . .

There arises the following crucial question.

6 J. Dieudonné, History of Functional Analysis, 1900–1975, North-Holland, Ams-
terdam, 1983 (reprinted with permission).
J. von Neumann, On the theory of unbounded matrices, J. reine und angew.
Mathematik 161 (1929), 208–236 (in German).
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Is the system of the computed energy eigenvalues E0, E1, E2 . . . complete?

The following theorem gives us the answer in terms of analysis.

Theorem 7.2 If the orthonormal system ϕ0, ϕ1, . . . is complete in the Hilbert space
X, then there are no other energy eigenvalues than E0, E1, E2, . . ., and the system
ϕ0, ϕ1, ϕ2, . . . cannot be extended to a larger orthonormal system of eigenstates.

Before giving the proof, we need some analytical tools.
Completeness. By definition, the orthonormal system ϕ0, ϕ1, ϕ2 . . . is com-

plete iff, for any ϕ ∈ X, the Fourier series

ϕ =
∞
X

n=0

〈ϕn|ϕ〉ϕn

is convergent in X, that is, limN→∞ ||ϕ −
PN

n=0〈ϕn|ϕ〉ϕn|| = 0. The proof of the
following proposition can be found in Zeidler (1995a), Chap. 3 (see the references
on page 1049).

Proposition 7.3 Let ϕ0, ϕ1, ϕ2 . . . be an orthonormal system in the infinite-di-
mensional separable complex Hilbert space X. Then the following statements are
equivalent.

(i) The system ϕ0, ϕ1, ϕ2, . . . is complete.
(ii) For all ϕ, ψ ∈ X, we have the convergent series

〈ψ|ϕ〉 =

∞
X

n=0

〈ψ|ϕn〉〈ϕn|ϕ〉, (7.2)

which is called the Parseval equation.
(iii) I =

P∞
n=0 ϕn ⊗ ϕn (completeness relation).7

(iv) For all ϕ ∈ X, we have the convergent series ||ϕ||2 =
P∞

n=0 |〈ϕn|ϕ〉|2.
(v) Let ϕ ∈ X. If all the Fourier coefficients of ϕ vanish, that is, we have

〈ϕn|ϕ〉 = 0 for all n, then ϕ = 0.
(vi) The linear hull of the set {ϕ0, ϕ1, ϕ2, . . .} is dense in the Hilbert space X.

Explicitly, for any ϕ ∈ X and any number ε > 0, there exist complex numbers
a0, . . . , an such that ||ϕ − (a1ϕ1 + . . . + anϕn)|| < ε.

Proof of Theorem 7.2. Suppose that Hϕ = Eϕ with ϕ �= 0 and that the eigen-
value E is different from E0, E1, E2, . . . . Since the eigenvectors for different eigen-
values are orthogonal to each other, we get 〈ϕn|ϕ〉 = 0 for all indices n. By Prop.
7.3(v), ϕ = 0. This is a contradiction. �

The Dirac calculus. According to Dirac, we write equation (7.1) as

H|En〉 = En|En〉, n = 0, 1, 2, . . .

Moreover, the completeness relation from Prop. 7.3(iii) reads as

I =

∞
X

n=0

|ϕn〉〈ϕn|. (7.3)

7 This means that ϕ = limN→∞
PN

n=0(ϕn ⊗ ϕn)ϕ for all ϕ ∈ X. Here, we use the
convention (ϕn ⊗ ϕn)ϕ := ϕn〈ϕn|ϕ〉.
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Mnemonically, from (7.3) we obtain |ϕ〉 =
P∞

n=0 |ϕn〉〈ϕn|ϕ〉 and

〈ψ|ϕ〉 = 〈ψ| · |ϕ〉 = 〈ψ| · I|ϕ〉 =

∞
X

n=0

〈ψ|ϕn〉〈ϕn|ϕ〉.

This coincides with the Fourier series expansion ϕ =
P∞

n=0〈ϕn|ϕ〉ϕn and the Par-
seval equation (7.2).

The following investigations serve as a preparation for the quantization of the
harmonic oscillator in the sections to follow.

7.2 Bosonic Creation and Annihilation Operators

Whoever understands creation and annihilation operators can understand
everything in quantum physics.

Folklore

The Hilbert space L2(R). We consider the space L2(R) of complex-valued (mea-
surable) functions ψ : R → C with

R∞
−∞ |ψ(x)|2dx < ∞. This becomes a complex

Hilbert space equipped with the inner product

〈ϕ|ψ〉 :=

Z ∞

−∞
ϕ(x)†ψ(x)dx for all ϕ, ψ ∈ L2(R).

Moreover, ||ψ|| :=
p

〈ψ|ψ〉. The precise definition of L2(R) can be found in Vol. I,
Sect. 10.2.4. Recall that the Hilbert space L2(R) is infinite-dimensional and sepa-
rable. For example, the complex-valued function ψ on the real line is contained in
L2(R) if we have the growth restriction at infinity,

|ψ(x)| ≤ const

1 + |x| for all x ∈ R,

and ψ is either continuous or discontinuous in a reasonable way (e.g., ψ is continuous
up to a finite or a countable subset of the real line). Furthermore, we will use the
space S(R) of smooth functions ψ : R → C which rapidly decrease at infinity (e.g.,

ψ(x) := e−x2
). The space S(R) is a linear subspace of the Hilbert space L2(R).

Moreover, S(R) is dense in L2(R). The precise definition of S(R) can be found in
Vol. I, Sect. 2.7.4.

The operators a and a†. Fix the positive number x0. Let us study the operator

a :=
1√
2

„

x

x0
+ x0

d

dx

«

.

More precisely, for each function ψ ∈ S(R), we define

(aψ)(x) :=
1√
2

„

xψ(x)

x0
+ x0

dψ(x)

dx

«

for all x ∈ R. (7.4)

This way, we get the operator a : S(R) → S(R). We also define the operator
a† : S(R) → S(R) by setting

a† :=
1√
2

„

x

x0
− x0

d

dx

«

. (7.5)
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Explicitly, for each function ψ ∈ S(R), we set8

(a†ψ)(x) :=
1√
2

„

xψ(x)

x0
− x0

dψ(x)

dx

«

for all x ∈ R.

The operators a and a† have the following properties:

(i) The operator a† : S(R) → S(R) is the formally adjoint operator to the operator
a : S(R) → S(R) on the Hilbert space L2(R).9 This means that

〈ϕ|aψ〉 = 〈a†ϕ|ψ〉 for all ϕ, ψ ∈ S(R).

(ii) We have the commutation relation

[a, a†]− = I

where I denotes the identity operator on the Hilbert space L2(R). Recall that
[A, B]− := AB − BA.

(iii) Set ϕ0(x) := c0e
−x2/2x2

0 with the normalization constant c0 := 1√
x0

√
π
. Then

aϕ0 = 0.
(iv) The operator N : S(R) → S(R) given by N := a†a is formally self-adjoint, and

it has the eigensolutions

Nϕn = nϕn, n = 0, 1, 2, . . .

where we set

ϕn :=
(a†)n

√
n!

ϕ0. (7.6)

(v) For n = 0, 1, 2, . . ., we have

a†ϕn =
√

n + 1 ϕn+1, aϕn+1 =
√

n + 1 ϕn.

Because of these relations, the operators a and a† are called ladder operators.10

(vi) The functions ϕ0, ϕ1, . . . form a complete orthonormal system of the complex
Hilbert space L2(R). This means that

〈ϕn|ϕm〉 =

Z ∞

−∞
ϕn(x)†ϕm(x) dx = δnm, n, m = 0, 1, 2, . . .

8 In applications to the harmonic oscillator later on, the quantity x has the phys-
ical dimension of length. We introduce the typical length scale x0 in order to
guarantee that the operators a and a† are dimensionless.

9 In functional analysis, one has to distinguish between the formally adjoint oper-
ator a† : S(R) → S(R) and the adjoint operator a∗ : D(a∗) → L2(R) which is an

extension of a†, that is, S(R) ⊆ D(a∗) ⊆ L2(R) and a∗ϕ = a†ϕ for all ϕ ∈ S(R)
(see Problem 7.4).

10 Ladder operators are frequently used in the theory of Lie algebras and in quantum
physics in order to compute eigenvectors and eigenvalues. Many examples can be
found in H. Green, Matrix Mechanics, Noordhoff, Groningen, 1965, and in Shi-
Hai Dong, Factorization Method in Quantum Mechanics, Springer, Dordrecht,
2007 (including supersymmetry). We will encounter this several times later on.
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Moreover, for each function ψ in the complex Hilbert space L2(R), the Fourier
series

ψ =

∞
X

n=0

〈ϕn|ψ〉ϕn

is convergent in L2(R). Explicitly,

lim
k→∞

||ψ −
k
X

n=0

〈ϕn|ψ〉ϕn|| = 0.

Recall that ||f ||2 = 〈f |f〉 =
R∞
−∞ |f(x)|2 dx.

(vii) The matrix elements amn of the operator a with respect to the basis ϕ0, ϕ1, . . .
are defined by

amn := 〈ϕm|aϕn〉, m, n = 0, 1, 2, . . .

Explicitly, amn =
√

n δm,n−1. Therefore,

(amn) =

0

B

B

B

B

@

0
√

1 0 0 0 ...

0 0
√

2 0 0 ...

0 0 0
√

3 0 ...
...

1

C

C

C

C

A

.

Similarly, we introduce the matrix elements (a†)mn of the operator a† by setting

(a†)mn := 〈ϕm|a†ϕn〉, m, n = 0, 1, 2, . . .

Then (a†)mn = a†
nm. Thus, the matrix to the operator a† is the adjoint matrix

to the matrix (amn).

Let us prove these statements. To simplify notation, we set x0 := 1.
Ad (i). For all functions ϕ, ψ ∈ S(R), integration by parts yields

Z ∞

−∞
ϕ(x)†

„

x +
d

dx

«

ψ(x)dx =

Z ∞

−∞

„

x − d

dx

«

ϕ(x)† · ψ(x)dx.

Hence 〈ϕ|aψ〉 = 〈a†ϕ|ψ〉.
Ad (ii). Obviously, 2aa†ψ = (x + d

dx
)(x − d

dx
)ψ = x2ψ + ψ − ψ′′. Similarly,

2a†aψ =

„

x − d

dx

«„

x +
d

dx

«

ψ = x2ψ − ψ − ψ′′.

Hence (aa† − a†a)ψ = ψ.

Ad (iii). Note that
√

2 ae−x2/2 = (x + d
dx

)e−x2/2 = 0.
Ad (iv). For all ϕ, ψ ∈ S(R),

〈ϕ|a†aψ〉 = 〈aϕ|aψ〉 = 〈a†aϕ|ψ〉.

Hence 〈ϕ|Nψ〉 = 〈Nϕ|ψ〉. Thus, the operator N is formally self-adjoint. We now
proceed by induction. Obviously, Nϕ0 = a†(aϕ0) = 0. Suppose that Nϕn = nϕn.
Then, by (ii),

N(a†ϕn) = a†aa†ϕn = a†(a†a + I)ϕn.

This implies
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N(a†ϕn) = a†(N + I)ϕn = (n + 1)a†ϕn.

Thus, Nϕn+1 = (n + 1)ϕn+1.
Ad (v). By definition of the state ϕn,

a†ϕn =
(a†)n+1

√
n!

ϕ0 =
√

n + 1
(a†)n+1

p

(n + 1)!
ϕ0 =

√
n + 1 ϕn+1.

Moreover, by (ii) and (iv),

√
n + 1 aϕn+1 = aa†ϕn = (a†a + I)ϕn = (n + 1)ϕn.

Ad (vi). We first show that the functions ϕ0, ϕ1, ... form an orthonormal system.
In fact, by the Gaussian integral,

〈ϕ0|ϕ0〉 =

Z ∞

−∞

e−x2

√
π

dx = 1.

We now proceed by induction. Suppose that 〈ϕn|ϕn〉 = 1. Then

(n + 1)〈ϕn+1|ϕn+1〉 = 〈a†ϕn|a†ϕn〉 = 〈ϕn|aa†ϕn〉 = 〈ϕn|(N + I)ϕn〉.

By (iv), this is equal to (n + 1)〈ϕn|ϕn〉. Hence 〈ϕn+1|ϕn+1〉 = 1.
Since the operator N is formally self-adjoint, eigenvectors of N to different

eigenvalues are orthogonal to each other. Explicitly, it follows from

n〈ϕn|ϕm〉 = 〈Nϕn|ϕm〉 = 〈ϕn|Nϕm〉 = m〈ϕn|ϕm〉

that 〈ϕn|ϕm〉 = 0 if n �= m. Finally, we will show below that the functions ϕ0, ϕ1, ...
coincide with the Hermite functions which form a complete orthonormal system in
L2(R).

Ad (vii). By (v),

〈ϕm|aϕn〉 =
√

n〈ϕm|ϕn−1〉 =
√

n δm,n−1.

Moreover, (a†)mn = 〈ϕm|a†ϕn〉 = 〈aϕm|ϕn〉 = (anm)†. �

Physical interpretation. In quantum field theory, the results above allow the
following physical interpretation.

• The function ϕn represents a normalized n-particle state.
• Since Nϕn = nϕn and the state ϕn consists of n particles, the operator N is

called the particle number operator.
• Since Nϕ0 = 0, the state ϕ0 is called the (normalized) vacuum state; there are

no particles in the state ϕ0.
• By (v) above, the operator a† sends the n-particle state ϕn to the (n+1)-particle

state ϕn+1. Naturally enough, the operator a† is called the particle creation
operator. In particular, the n-particle state

ϕn =
(a†)n

√
n!

ϕ0

is obtained from the vacuum state ϕ0 by an n-fold application of the particle
creation operator a.11

11 For the vacuum state ϕ0, physicists also use the notation |0〉.
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• Similarly, by (v) above, the operator a sends the (n+1)-particle state ϕn+1 to the
n-particle state ϕn. Therefore, the operator a is called the particle annihilation
operator.

The position operator Q and the momentum operator P. We set

Q :=
x0√

2
(a† + a), P :=

i�

x0

√
2
(a† − a).

This way, we obtain the two linear operators Q, P : S(R) → S(R) along with the
commutation relation

[Q, P ]− = i�I.

This follows from [a, a†]− = I. In fact,

[Q, P ]− = 1
2
[a† + a, i�(a† − a)]−.

Hence 2[Q, P ]− = i�[a, a†]− − i�[a†, a]− = 2i�[a, a†]− = 2i�I. Explicitly, for all
functions ψ ∈ S(R) and all x ∈ R,

(Qψ)(x) = xψ(x), (Pψ)(x) = −i�
dψ(x)

dx
.

Hence P = −i� d
dx

. The operators Q, P are formally self-adjoint, that is,

〈ϕ|Qψ〉 = 〈Qϕ|ψ〉, 〈ϕ|Pψ〉 = 〈Pϕ|ψ〉

for all functions ϕ, ψ ∈ S(R). In fact,

〈ϕ|Qψ〉 =

Z ∞

−∞
ϕ(x)†xψ(x) dx =

Z ∞

−∞
(xϕ(x))†ψ(x) dx = 〈Qϕ|ψ〉.

Furthermore, noting that (iϕ(x))† = −iϕ(x)†, integration by parts yields

〈ϕ|Pψ〉 =

Z ∞

−∞
ϕ(x)†(−i�ψ′(x))dx =

Z ∞

−∞
(−i�ϕ′(x))†ψ(x) dx = 〈Pϕ|ψ〉.

The Hermite functions. To simplify notation, we set x0 := 1. We will show
that the functions ϕ0, ϕ1, ... introduced above coincide with the classical Hermite
functions.12 To this end, for n = 0, 1, 2, ..., we introduce the Hermite polynomials

Hn(x) := (−1)nex2 dne−x2

dxn
(7.7)

along with the Hermite functions

ψn(x) :=
e−x2/2Hn(x)
p

2nn!
√

π
, x ∈ R. (7.8)

Explicitly, H0(x) = 1, H1(x) = 2x, and H2(x) = 4x2 − 2. For n = 0, 1, 2, ..., the
following hold:

12 Hermite (1822–1901).
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(a) For all complex numbers t and x,

e−t2+2xt =

∞
X

n=0

Hn(x)
tn

n!
.

Therefore, the function (t, x) �→ e−t2+2xt is called the generating function of
the Hermite polynomials.

(b) The polynomial Hn of nth degree has precisely n real zeros. These zeros are
simple.

(c) First recursive formula:

Hn+1(x) = 2xHn(x) − 2nHn−1(x), x ∈ R.

(d) H2n+1(0) = 0, and H2n(0) = (−1)n · 2n · 1 · 3 · 5 · · · (2n − 1).
(e) Hn(x) = 2nxn + an−1x

n−1 + ... + a1x + 1 for all x ∈ R.
(f) Second recursive formula:

Hn(x) = Hn(0) + 2n

Z x

0

Hn−1(y)dy, x ∈ R.

(g) The Hermite functions ψ0, ψ1, ... form a complete orthonormal system in the
complex Hilbert space L2(R).

(h) a†ψn =
√

n + 1 ψn for n = 0, 1, 2, ...
(j) ψn = ϕn for n = 0, 1, 2...
(k) x2ψn(x) − ψ′′

n(x) = (2n + 1)ψn(x) for all x ∈ R.

Let us prove this.
Ad (a). By the Cauchy formula,

f (n)(x) =
n!

2πi

Z

C

f(z)

(z − x)n+1
dz, x ∈ C.

Here, we assume that the function f is holomorphic on the complex plane C. More-
over, C is a counter-clockwise oriented circle centered at the point x. Hence

(−1)ne−x2
Hn(x) =

n!

2πi

Z

C

e−z2

(z − x)n+1
dz.

Substituting z = t + x,

Hn(x) =
n!

2πi

Z

C0

e−t2+2tx

tn+1
dt.

Here, the circle C0 is centered at the origin. Using again the Cauchy formula along
with Taylor expansion, we get the claim (a).

Ad (b). The proof will be given in Problem 7.26.
Ad (c). Differentiate relation (a) with respect to t, and use comparison of coef-

ficients.
Ad (d). Use an induction argument based on (c).
Ad (e). Use the definition (7.7) of Hn along with an induction argument.
Ad (f). Differentiate relation (a) by x, and use comparison of coefficients. Then,

H ′
n = 2nHn−1.

Ad (g). The proof can be found in Zeidler (1995a), p. 210 (see the references
on page 1049).
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Ad (h). Use the definition of ψn and the relation
√

2 a† = x − d
dx

.
Ad (j). Obviously, ϕ0 = ψ0. By (h), both ψ1 and ϕ1 are generated from ϕ0 the

same way. Hence ϕ1 = ψ1. Similarly, ϕ2 = ψ2, and so on.
Ad (k). This follows from a†aϕn = nϕn together with ϕn = ψn and

a†aψn =
1

2

„

x − d

dx

«„

x +
d

dx

«

ψn.

�

The normal product. Let n = 1, 2, . . . . Again choose x0 := 1. Consider

Qn =
1√
2n

(a + a†)n =
1√
2n

(a + a†) · · · (a + a†).

This is a polynomial with respect to a and a†. By definition, the normal product
: Qn : is obtained from Qn by rearranging the factors in such a way that a† (resp.
a) stands left (resp. right). Explicitly, by the binomial formula,

: Qn :=
1√
2n

n
X

k=0

 

n

k

!

(a†)kan−k.

We get the key relation

〈ϕ0| : Qn : ϕ0〉 = 0, n = 1, 2, . . . ,

telling us that the vacuum expectation value of the normal product is equal to
zero. This follows from aϕ0 = 0, which implies 〈ϕ0| . . . aϕ0〉 = 0 together with
〈ϕ0|a† . . .〉 = 〈aϕ0| . . .〉 = 0. Finally, we set : Q0 := I if n = 0.

For example, Q2 = 1
2
(a+a†)(a+a†) is equal to 1

2
(a2 +aa† +a†a+(a†)2). Hence

: Q2 := 1
2
a2 + a†a + 1

2
(a†)2.

This implies : Q2 : ψ = (x2 − 1
2
)ψ. Hence : Q2 := x2 − 1

2
. It turns out that

Qn = xn + . . . is a polynomial of degree n. Explicitly,

: Qn :=
Hn(x)

2n
, n = 0, 1, 2, . . . .

For the proof, we refer to Problem 7.27.
Coherent states. For each complex number α, we define

ϕα := e−|α|2/2
∞
X

n=0

αn

√
n!

ϕn. (7.9)

By the Parseval equation,

||ϕα||2 = e−|α|2
∞
X

n=0

|α|2n

n!
= 1 for all α ∈ C.

Therefore, the infinite series (7.9) is convergent in the Hilbert space L2(R). On page
478, we will prove that
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aϕα = αϕα for all α ∈ C. (7.10)

This tells us that the so-called coherent state ϕα is an eigenstate of the annihi-
lation operator a. There exists a continuous family {ϕα}α∈C of eigenstates of the
operator a. In terms of physics, the coherent state ϕα is the superposition of states
ϕ0, ϕ1, ϕ2, . . . with the fixed particle number 0, 1, 2, . . ., respectively, and it is stable
under particle annihilation, by (7.10).

Coherent states are frequently used as a nice tool for studying special physical
situations in quantum optics, quantum statistics, and quantum field theory (e.g.,
the mathematical modelling of laser beams).

A finite family of bosonic creation and annihilation operators. The
normal product and the following considerations are crucial for quantum field the-
ory. Let n = 1, 2, .. On the complex Hilbert space L2(R

n) equipped with the inner
product13

〈ϕ|ψ〉 :=

Z

Rn

ϕ(x)†ψ(x)dx

for all ϕ, ψ ∈ L2(R
n), we define the operators

aj , a
†
j : S(Rn) → S(Rn), j = 1, ..., n

given by

aj :=
1√
2

„

xj +
∂

∂xj

«

, a†
j :=

1√
2

„

xj −
∂

∂xj

«

.

Explicitly, for all functions ψ ∈ S(Rn),

(ajψ)(x) :=
1√
2

„

xjψ(x) +
∂ψ(x)

∂xj

«

, x ∈ R
n.

For all functions ϕ, ψ ∈ S(Rn), we have

〈ϕ|ajψ〉 = 〈a†
jϕ|ψ〉, j = 1, ..., n,

that is, the operator a†
j is the formally adjoint operator to the operator aj on S(Rn).

For j, k = 1, ..., n, we have the following commutation relations

[aj , a
†
k]− = δjkI, (7.11)

and

[aj , ak]− = [a†
j , a

†
k]− = 0. (7.12)

A special role is played by the state

ϕ0(x) := c0e
−x2

, x ∈ R
n

with x2 := x2
1 + ... + x2

n and the normalization constant c0 := π−n/4. Then

〈ϕ0|ϕ0〉 =

Z

Rn

e−
1
2

x2
1−...− 1

2
x2

n

(
√

π)n
dx1 · · · dxn =

0

@

Z

R

e−
1
2

y2

√
π

dy

1

A

n

= 1.

13 The definition of the spaces S(Rn) and L2(R
n) can be found in Vol. I, Sects.

2.7.4 and 10.2.4, respectively.
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The operator N : S(Rn) → S(Rn) given by

N :=

n
X

j=1

a†
jaj

has the eigensolutions

N |k1k2 . . . kn〉 = (k1 + k2 + ... + kn)|k1k2...kn〉 (7.13)

with k1, k2, . . . , kn = 0, 1, 2, . . . Here, we set

|k1k2 . . . kn〉 :=
(a†

1)
k1

√
k1!

(a†)k2

√
k2!

· · · (a†)kn

√
kn!

ϕ0.

The system of states |k1k2 . . . kn〉 forms a complete orthonormal system in the
complex Hilbert space L2(R

n). The operator N is formally self-adjoint, that is,

〈ϕ|Nψ〉 = 〈Nϕ|ψ〉 for all ϕ, ψ ∈ S(Rn).

The proofs for the claims above proceed analogously as for the operators a and a†.
We use the following terminology. There are n types of elementary particles called
bosons.

• The state |k1k2 . . . kn〉 corresponds to k1 bosons of type 1, k2 bosons of type
2,. . . , and kn bosons of type n.

• The operator a†
j is called the creation operator for bosons of type j.

• The operator aj is called the annihilation operator for bosons of type j.
• The operator N is called the particle number operator.
• Since Nϕ0 = 0, the state ϕ0 is called the (normalized) vacuum state. Instead of

ϕ0, physicists also write |0〉.

7.3 Heisenberg’s Quantum Mechanics

Quantum mechanics was born on December 14, 1900, when Max Planck
delivered his famous lecture before the German Physical Society in Berlin
which was printed afterwards under the title “On the law of energy distri-
bution in the normal spectrum.” In this paper, Planck assumed that the
emission and absorption of radiation always takes place in discrete portions
of energy or energy quanta hν, where ν is the frequency of the emitted or
absorbed radiation. Starting with this assumption, Planck arrived at his
famous formula

� =
αν3

ehν/kT − 1

for the energy density � of black-body radiation at temperature T .14

Barthel Leendert van der Waerden, 1967

14 B. van der Waerden, Sources of Quantum Mechanics, North-Holland, Amster-
dam, 1967 (reprinted with permission).
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The present paper seeks to establish a basis for theoretical quantum me-
chanics founded exclusively upon relationships between quantities which
in principle are observable.15

Werner Heisenberg, 1925

The recently published theoretical approach of Heisenberg is here devel-
oped into a systematic theory of quantum mechanics with the aid of math-
ematical matrix theory. After a brief survey of the latter, the mechanical
equations of motions are derived from a variational principle and it is
shown that using Heisenberg’s quantum condition, the principle of energy
conservation and Bohr’s frequency condition follow from the mechanical
equations. Using the anharmonic oscillator as example, the question of
uniqueness of the solution and of the significance of the phases of the
partial vibrations is raised. The paper concludes with an attempt to in-
corporate electromagnetic field laws into the new theory.16

Max Born and Pascal Jordan, 1925

There exist three different, but equivalent approaches to quantum mechanics,
namely,

(i) Heisenberg’s particle quantization from the year 1925 and its refinement by
Born, Dirac, and Jordan in 1926,

(ii) Schrödinger’s wave quantization from 1926, and
(iii) Feynman’s statistics over classical paths via path integral from 1942.

In what follows we will thoroughly discuss these three approaches in terms of the
harmonic oscillator. Let us start with (i).

The classical harmonic oscillator. Recall that the differential equation

q̈(t) + ω2q(t) = 0, t ∈ R (7.14)

describes the motion q = q(t) of a point of mass m on the real line which oscillates
with the positive angular frequency ω. We add the initial condition q(0) = q0 and
q̇(0) = v0. Let us introduce the momentum p := mq̇ and the Hamiltonian

H(q, p) :=
p2

2m
+

mω2q2

2

which represents the energy of the particle. Recall that the equation of motion
(7.14) is equivalent to the canonical equations ṗ = −Hq, q̇ = Hq. Explicitly,

ṗ(t) = −mω2q(t), mq̇(t) = p(t), t ∈ R,

along with the initial conditions q(0) = q0 and p(0) = p0. Note that p0 = mv0

where v0 is the initial velocity of the particle. Let us introduce the typical length
scale

x0 :=

r

�

mω

which can be formed by using the parameters m, ω and �. Let a be an arbitrary
complex number. The general solution of (7.14) is given by

15 W. Heisenberg, Quantum-theoretical re-interpretation of kinematic and mechan-
ical relations, Z. Physik 33 (1925), 879–893 (in German).

16 M. Born and P. Jordan, On Quantum Mechanics, Z. Physik 34 (1925), 858–888
(in German).
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q(t) =
x0√

2
(a†eiωt + ae−iω), t ∈ R. (7.15)

For the momentum, we get

p(t) = mq̇(t) =
i�

x0

√
2

(a†eiωt − ae−iω), t ∈ R.

Letting t = 0, we obtain

a =
1√
2

„

q(0)

x0
+

ix0p(0)

�

«

for the relation between the Fourier coefficient a and the real initial values q(0) and
p(0). Hence, for the conjugate complex Fourier coefficient,

a† =
1√
2

„

q(0)

x0
− ix0p(0)

�

«

.

For the Hamiltonian,

H(q(t), p(t)) = �ω(a†a + 1
2
), t ∈ R.

This expression does not depend on time t which reflects conservation of energy for
the motion of the harmonic oscillator. Note that

q(t)† = q(t), p(t)† = p(t) for all t ∈ R,

and that a, a† are dimensionless. In quantum mechanics, this classical reality con-
dition will be replaced by the formal self-adjointness of the operators q(t) and p(t).

The classical uncertainty relation. The motion q = q(t) has the time period
T = 2π/ω. Let us now study the time means of the classical motion. For a T -periodic
function f : R → R, we define the mean value

f̄ =
1

T

Z T/2

−T/2

f(t)dt,

and the mean fluctuation Δf by

(Δf)2 = (f − f̄)2 =
1

T

Z T/2

−T/2

(f(t) − f̄)2dt.

To simplify computations, let us restrict ourselves to the special case where the
initial velocity of the particle vanishes, p0 = 0. Then we get the energy E =
mω2q(0)2/2, along with17

q̄ = p̄ = 0, Δp = mωΔq, Δq =

r

E

mω2
.

This implies the so-called classical uncertainty relation:

ΔqΔp =
E

ω
. (7.16)

17 Note that
R T/2

−T/2
eikωtdt =

R T/2

−T/2
ei2πkt/T dt = 0 if k = 1, 2, . . .
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Poisson brackets. In order to quantize the classical harmonic oscillator, it is
convenient to write the classical equation of motion in terms of Poisson brackets.
Recall that

{A(q, p), B(q, p)} :=
∂A(q, p)

∂q

∂B(q, p)

∂p
− ∂B(q, p)

∂q

∂A(q, p)

∂p
.

For example, {q, p} := 1, {q, H} = Hp = p/m, and {p, H} = −Hq = −mω2q. Thus,
for all times t ∈ R, the equations of motion for the harmonic oscillator read as

q̇(t) = {q(t), H(q(t), p(t))}, ṗ(t) = {p(t), H(q(t)), p(t)}, (7.17)

together with {q(t), p(t)} = 1.

7.3.1 Heisenberg’s Equation of Motion

In a recent paper, Heisenberg puts forward a new theory which suggests
that it is not the equations of classical mechanics that are in any way at
fault, but that the mathematical operations by which physical results are
deduced from them require modification. All the information supplied by
the classical theory can thus be made use of in the new theory . . . We make
the fundamental assumption that the difference between the Heisenberg
products is equal to i� times their Poison bracket

xy − yx = i�{x, y}. (7.18)

It seems reasonable to take (7.18) as constituting the general quantum
conditions.18

Paul Dirac, 1925

The general quantization principle. We are looking for a simple principle which
allows us to pass from classical mechanics to quantum mechanics. This principle
reads as follows:

• position q(t) and momentum p(t) of the particle at time t become operators,
• and Poisson brackets are replaced by Lie brackets,

{A(q, p), B(q, p)} ⇒ 1

i�
[A(q, p), B(q, p)]−.

Recall that [A, B]− := AB − BA. Using this quantization principle, the classical
equation of motion (7.17) passes over to the equation of motion for the quantum
harmonic oscillator

i�q̇(t) = [q(t), H(q(t), p(t))]−,

i�ṗ(t) = [p(t), H(q(t), p(t))]−
(7.19)

together with

18 P. Dirac, The fundamental equations of quantum mechanics, Proc. Royal Soc.
London Ser. A 109 (1925), no. 752, 642–653.
A far-reaching generalization of Dirac’s principle to the quantization of general
Poisson structures was proven by Kontsevich. In 1998, he was awarded the Fields
medal for this (see the papers by Kontsevich (2003) and by Cattaneo and Felder
(2000) quoted on page 676).
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[q(t), p(t)]− = i�I. (7.20)

The latter equation is called the Heisenberg–Born–Jordan commutation relation.
The method of Fourier quantization. In order to solve the equations of

motion (7.19), (7.20), we use the classical solution formula

q(t) =
x0√

2
(a†eiωt + ae−iωt),

p(t) = mq̇(t) =
i�

x0

√
2

(a†eiωt − ae−iωt) (7.21)

for all times t ∈ R. But we replace the classical Fourier coefficients a and a† by
operators a and a† which satisfy the commutation relation

[a, a†]− = I.

These operators can be found in Sect. 7.2. Let us check that indeed we obtain a
solution. First of all note that

[q(t), p(t)]− = 1
2
i�[a†eiωt + ae−iωt, a†eiωt − ae−iωt]−

= 1
2
i�([a, a†]− − [a†, a]−) = i�[a, a†]− = i�I.

As in the classical case, one checks easily that

mq̇(t) = p(t), ṗ(t) = −mω2q(t).

Moreover, it follows from [q, p]− = i� that

[q, p2]− = ([q, p]−)p + p[q, p]− = 2i�p.

Similarly, for n = 1, 2, ...,

[q, pn]− = i�npn−1, [p, qn]− = −i�nqn−1,

by induction. Hence

2m[q(t), H(q(t), p(t))]− = [q(t), p(t)2]− = 2i�p(t) = 2mi�q̇(t).

This is the first equation of motion. Similarly, we get the second equation of motion

[p(t), H(q(t), p(t))]− = 1
2
[p(t), mω2q2(t)]− = −i�mω2q(t) = i�ṗ(t).

For the Hamiltonian, it follows from [a, a†]− = I that

H(q(t), p(t)) = �ω(a†a + 1
2
). (7.22)

Matrix elements. Let us use the results from Sect. 7.2. Recall that the states

ϕn :=
(a†)n

√
n!

ϕ0, n = 0, 1, 2, ...

form a complete orthonormal system of the complex Hilbert space L2(R). In addi-
tion, ϕn ∈ S(R) for all n. For the physical interpretation of Heisenberg’s quantum
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mechanics, infinite-dimensional matrices play a crucial role. Let us discuss this. We
assign to each linear operator A : S(R) → S(R) the matrix elements

Amn := 〈ϕm|Aϕn〉, m, n = 0, 1, 2, . . .

For two linear formally self-adjoint operators A, B : S(R) → S(R), we get the
product rule

(AB)mn =
∞
X

k=0

AmkBkn, m, n = 0, 1, 2, ... (7.23)

In fact, by the Parseval equation (7.2), this follows from

〈ϕm|ABϕn〉 = 〈Aϕm|Bϕn〉 =
∞
X

k=0

〈Aϕm|ϕk〉〈ϕk|Bϕn〉

along with 〈Aϕm|ϕk〉 = 〈ϕm|Aϕk〉.
Examples. Let us now compute the matrix elements of H, q(t), and p(t). It

follows from Nϕn = nϕn that

Hϕn = �ω(N + 1
2
I)ϕn = �ω(n + 1

2
)ϕn.

Hence Hmn = 〈ϕm|Hϕn〉 = En〈ϕm|ϕn〉 = Enδnm with En = �ω(n+ 1
2
). This yields

the diagonal matrix

(Hmn) =

0

B

B

@

E0 0 0 0 ...

0 E1 0 0 ...
...

1

C

C

A

.

It follows from Sect. 7.2 that akn =
√

n δk,n−1. Thus, by (7.21),

qkn(t) =
x0√

2
(ankeiωt + akne−iωt). (7.24)

This way, we get the self-adjoint matrix

(qkn(t)) =
x0√

2

0

B

B

B

B

@

0
√

1 e−iωt 0 0 ...√
1 eiωt 0

√
2 e−iωt 0 ...

0
√

2 eiωt 0 0 ...
...

1

C

C

C

C

A

for all times t ∈ R. Similarly,

pkn(t) = mq̇kn(t), k, n = 0, 1, 2, ...

By the product rule (7.23), for the square of the position matrix (qkn) we get

(qkn)2 =
x2

0

2

0

B

B

B

B

@

1 0 0 0 ...

0 3 0 0 ...

0 0 5 0 ...
...

1

C

C

C

C

A

. (7.25)
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Similarly,

(pkn)2 =
�

2

2x2
0

0

B

B

B

B

@

1 0 0 0 ...

0 3 0 0 ...

0 0 5 0 ...
...

1

C

C

C

C

A

.

7.3.2 Heisenberg’s Uncertainty Inequality for the Harmonic
Oscillator

In order to discuss the physical meaning of the matrices introduced above, we will
use the following terminology:

• The elements ψ of the complex Hilbert space L2(R) normalized by the condition
〈ψ|ψ〉 = 1 are called normalized states of the quantum harmonic oscillator,

• whereas the linear, formally self-adjoint operators A : S(R) → S(R) are called
formal observables.

Two normalized states ψ and ϕ are called equivalent iff

ϕ = eiαψ

for some real number α. We say that ϕ and ψ differ by phase. Consider some
normalized state ψ and some formal observable A. The number

Ā := 〈ψ|Aψ〉

is interpreted as the mean value of the observable A measured in the state ψ.19

Moreover, the nonnegative number ΔA given by

(ΔA)2 := 〈ψ|(A − Ā)2ψ〉

is interpreted as the fluctuation of the measured mean value Ā. Let us choose
n = 0, 1, 2, . . . For the state ϕn of the quantum harmonic oscillator, we get the
following measured values for all times t ∈ R.

(i) Energy: Ē = En = �ω(n + 1
2
) and ΔE = 0.

(ii) Position: q̄(t) = qnn(t) = 0 and Δq(t) = x0

q

n + 1
2
.

(iii) Momentum: p̄(t) = pnn(t) = 0 and Δp(t) = �

x0

q

n + 1
2
.

(iv) Heisenberg’s uncertainty inequality:

Δq(t)Δp(t) ≥ �

2
.

Let us prove this.
Ad (i). For the energy, it follows from the eigensolution Hϕn = Enϕn that

Ē = 〈ϕn|Hϕn〉 = En〈ϕn|ϕn〉 = En,

and ΔE = ||(H − EnI)ϕn|| = 0.

19 Since the operator A is formally self-adjoint, the number Ā is real. Furthermore,
note that 〈ψ|(A − Ā)2ψ〉 = 〈(A − Ā)ψ|(A − Ā)ψ〉 = ||(A − ĀI)ψ||2 ≥ 0.
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Ad (ii). Note that

(Δq)2 = 〈ϕn|q(t)2ϕn〉.
Therefore, (Δq)2 is the nth diagonal element of the product matrix (qkn)2 which
can be found in (7.25). Analogously, we get (iii). The uncertainty inequality is an
immediate consequence of (ii) and (iii). �

The famous Heisenberg uncertainty inequality for the quantum harmonic os-
cillator tells us that the state ϕn has the sharp energy En, but it is impossible
to measure sharply both position and momentum of the quantum particle at the
same time. Thus, there exists a substantial difference between classical particles
and quantum particles.

It is impossible to speak of the trajectory of a quantum particle.

7.3.3 Quantization of Energy

I have the best of reasons for being an admirer of Werner Heisenberg.
He and I were young research students at the same time, about the same
age, working on the same problem. Heisenberg succeeded where I failed. . .
Heisenberg - a graduate student of Sommerfeld - was working from the
experimental basis, using the results of spectroscopy, which by 1925 had
accumulated an enormous amount of data20. . .

Paul Dirac, 1968

The measured spectrum of an atom or a molecule is characterized by two quantities,
namely,

• the wave length λnm of the emitted spectral lines (where n, m = 0, 1, 2, . . . with
n > m), and

• the intensity of the spectral lines.

In Bohr’s and Sommerfeld’s semi-classical approach to the spectra of atoms and
molecules from the years 1913 and 1916, respectively, the spectral lines correspond
to photons which are emitted by jumps of an electron from one orbit of the atom or
molecule to another orbit. If E0 < E1 < E2 < . . . are the (discrete) energies of the
electron corresponding to the different orbits, then a jump of the electron from the
higher energy level En to the lower energy level Em produces the emission of one
photon of energy En − Em. According to Einstein’s light quanta hypothesis from
1905, this yields the frequency

νnm =
En − Em

h
, n > m (7.26)

of the emitted photon, and hence the wave length λnm = c/νnm of the corresponding
spectral line is obtained. The intensity of the spectral lines depends on the transition
probabilities for the jumps of the electrons. In 1925 it was Heisenberg’s philosophy
to base his new quantum mechanics only on quantities which can be measured in
physical experiments, namely,

• the energies E0, E1, . . . of bound states and

20 In: A. Salam (Ed.), From a Life of Physics. Evening Lectures at the International
Center for Theoretical Physics, Trieste (Italy), with outstanding contributions
by Abdus Salam, Hans Bethe, Paul Dirac, Werner Heisenberg, Eugene Wigner,
Oscar Klein, and Eugen Lifshitz, International Atomic Energy Agency, Vienna,
Austria, 1968.
A. Sommerfeld, Atomic Structure and Spectral Lines, Methuen, London, 1923.
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• the transition probabilities for changing bound states.21

Explicitly, Heisenberg replaced the trajectory q = q(t), t ∈ R of a particle in classical
mechanics by the following family (qnm(t)) of functions

qnm(t) = qnm(0)eiωnmt, n, m = 0, 1, 2, . . .

where ωnm = 2πνnm, and the frequencies νnm are given by (7.26). It follows from
(7.26) that

νnk + νkm = νnm, n < k < m.

In physics, this is called the Ritz combination principle for frequencies.22 In terms
of mathematics, this tells us that the family {νnm} of frequencies represents a
cocycle generated by the family {En} of energies. Thus, this approach is based on a
simple variant of cohomology.23 In order to compute the intensities of spectral lines,
Heisenberg was looking for a suitable quadratic expression in the amplitudes qnm(0).
Using physical arguments and analogies with the product formula for Fourier series
expansions, Heisenberg invented the composition rule

(q2(0))nm :=

∞
X

k=0

qnk(0)qkm(0) (7.27)

for defining the square (qnm(0))2 of the scheme (qnm(0)). Applying this to the har-
monic oscillator (and the anharmonic oscillator as a perturbed harmonic oscillator),
Heisenberg obtained the energies

En = ω�(n + 1
2
), n = 0, 1, 2, . . .

for the quantized harmonic oscillator.
After getting Heisenberg’s manuscript, Born (1882–1970) noticed that the com-

position rule (7.27) resembled the product for matrices q(t) = (qnm(t)), which he
learned as a student in the mathematics course. He guessed the validity of the rule

qp − pq = i�. (7.28)

But he was only able to verify this for the diagonal elements. After a few days of
joint work with his pupil Pascal Jordan (1902–1980), Born finished a joint paper
with Jordan on the new quantum mechanics including the commutation rule (7.28);
nowadays this is called the Heisenberg–Born–Jordan commutation rule (or briefly
the Heisenberg commutation rule). At that time, Heisenberg was not in Göttingen,
but on the island Helgoland (North Sea) in order to cure a severe attack of hay
fever. After coming back to Göttingen, Heisenberg wrote together with Born and
Jordan a fundamental paper on the principles of quantum mechanics. The English
translation of the following three papers can be found in van der Waerden (1968):

21 Heisenberg’s thinking was strongly influenced by the Greek philosopher Plato
(428–347 B.C.). Nowadays one uses the Latin version ‘Plato’. The correct Greek
name is ‘Platon’. Plato’s Academy in Athens had unparalleled importance for
Greek thought. The greatest philosophers, mathematicians, and astronomers
worked there. For example, Aristotle (384–322 B.C.) studied there. In 529 A.D.,
the Academy was closed by the Roman emperor Justitian.

22 Ritz (1878–1909) worked in Göttingen.
23 The importance of cohomology for classical and quantum physics will be studied

in Vol. IV on quantum mathematics.
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W. Heisenberg, Quantum-theoretical re-interpretation of kinematics and
mechanical relations), Z. Physik 33 (1925), 879–893.

M. Born, P. Jordan, On quantum mechanics, Z. Physik 35 (1925), 858–888.

M. Born, W. Heisenberg, and P. Jordan, On quantum mechanics II, Z.
Physik 36 (1926), 557–523.

At the same time, Dirac formulated his general approach to quantum mechanics:

P. Dirac, The fundamental equations of quantum mechanics, Proc. Royal
Soc. London Ser. A 109 (1926), no. 752, 642–653.

Heisenberg, himself, pointed out the following at the Trieste Evening Lectures in
1968:

It turned out that one could replace the quantum conditions of Bohr’s
theory by a formula which was essentially equivalent to the sum-rule in
spectroscopy by Thomas and Kuhn. . . I was however not able to get a
neat mathematical scheme out of it. Very soon afterwards both Born and
Jordan in Göttingen and Dirac in Cambridge were able to invent a perfectly
closed mathematical scheme: Dirac with very ingenious new methods on
abstract noncommutative q-numbers (i.e., quantum-theoretical numbers),
and Born and Jordan with more conventional methods of matrices.

7.3.4 The Transition Probabilities

Let us discuss the meaning of the entries qkn of the position matrix on page 445.
Suppose that the quantum particle is an electron of electric charge −e and mass
m. Let ε0 and c be the electric field constant and the velocity of light of a vacuum,
respectively. Furthermore, let h be the Planck action quantum, and set � := h/2π.24

According to Heisenberg, the real number

γkn :=
ω3

kne2(t2 − t1)

3πε0�c3
|qkn(0)|2, n, k = 0, 1, 2, . . . , n �= k (7.29)

is the transition probability for the quantum particle to pass from the state ϕk to
the state ϕn during the time interval [t1, t2]. Here, ωkn := (Ek − En)/�. This will
be motivated below. Note that γkn = γnk. Explicitly,

γkn :=
ω2e2(t2 − t1)

6πε0c3m
(nδk,n−1 + kδn,k−1).

This means the following.

• Forbidden spectral lines: The transition of the quantum particle from the state
ϕn of energy En to the state ϕk of energy Ek is forbidden, i.e., γkn = 0, if the
energy difference En − Ek is equal to ±2�ω,±3�ω, ...

• Emission of radiation: The transition probability from the energy En+1 to the
energy En during the time interval [t1, t2] is equal to

γn+1,n =
ω2e2(t2 − t1)

6πε0c3m
(n + 1), n = 0, 1, 2, ... (7.30)

In this case, a photon of energy E = �ω is emitted. The meaning of transition
probability is the following. Suppose that we have N oscillating electrons in the

24 The numerical values can be found on page 949 of Vol. I.
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state ϕn. Then the number of electrons which jump to the state ϕn+1 during the
time interval [t1, t − 2] is equal to Nγn,n+1. Then the emitted mean energy E,
which passes through a sufficiently large sphere during the time interval [t1, t2],
is equal to

E = Nγn+1,n · �ω.

This quantity determines the intensity of the emitted spectral line.
• Absorption of radiation: The transition probability from the energy En to the

energy En+1 during the time interval [t1, t2] is equal to

γn,n+1 = γn+1,n, n = 0, 1, 2, ...

In this case, a photon of energy En+1 − En = �ω is absorbed.

Motivation of the transition probability. We want to motivate formula
(7.29).

Step 1: Classical particle. Let q = q(t) describe the motion of a classical particle
of mass m and electric charge −e on the real line. This particle emits the mean
electromagnetic energy E through a sufficiently large sphere during the time interval
[t1, t2]. Explicitly,

E =
e2(t2 − t1)

6πε0c3
mean(q̈2(t))

(see Landau and Lifshitz (1982), Sect. 67). We assume that the smooth motion of
the particle has the time period T . Then we have the Fourier expansion

q(t) =

∞
X

r=−∞
qre

iωrt, t ∈ R

with the angular frequency ω := 2π/T and ωr := rω. Since the function t �→ q(t) is
real, we get qr(t)

† = q−r(t) for all r = 0,±1,±2, . . . Hence

q̈2(t) =
∞
X

r,s=−∞
ω2

rqrω
2
sqse

i(ωr+ωs)t.

Since mean
“

ei(ωr+ωs)t
”

= 1
T

R T

0
ei(ωr+ωs)tdt = δ0,r+s, we get

mean(q̈2(t)) =

∞
X

r=−∞
ω4

rqrq−r = 2

∞
X

r=1

ω4
r |qr|2.

This yields E =
P∞

r=1 Er with

Er :=
e2(t2 − t1)

3πε0c3
· ω4

r |qr|2.

Step 2: Quantum particle. In 1925 Heisenberg postulated that, for the har-
monic oscillator, the passage from the classical particle to the quantum particle
corresponds to the two replacements

(i) ωr ⇒ ωkn := (Ek − En)/�, and
(ii) qr ⇒ qkn(0).
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Let k > n. If the quantum particle jumps from the energy level Ek to the lower
energy level En, then a photon of energy Ek − En = �ωkn is emitted. Using the
replacements (i) and (ii) above, we get E =

P

k≥1

Pk−1
n=0 Ekn with

Ekn :=
e2(t2 − t1)

3πε0c3
· ω4

kn|qkn(0)|2.

By definition, the real number

γkn :=
Ekn

�ωkn
, k > n

is the transition probability for a passage of the quantum particle from the energy
level Ek to the lower energy level En during the time interval [t1, t2]. From (7.24)
we get |qkn(0)|2 = �

2mω
kδn,k−1. Hence γkn = 0 for the choice k = n + 2, n + 3, . . .

Moreover,

γn+1,n =
En+1,n

�ω
=

e2(t2 − t1)

6πε0c3m
· ω2(n + 1), n = 0, 1, 2, . . .

This motivates the claim (7.30).

7.3.5 The Wightman Functions

Both the Wightman functions and the correlation functions of the quan-
tized harmonic oscillator are the prototypes of general constructions used
in quantum field theory.

Folklore

As we have shown, the motion of the quantum particle corresponding to the quan-
tized harmonic oscillator is described by the time-depending operator function

q(t) =
x0√

2
(a†eiωt + ae−iωt), t ∈ R (7.31)

with the initial condition q(0) = Q and p(0) = P. Using this, we define the n-point
Wightman function of the quantized harmonic oscillator by setting

Wn(t1, t2, . . . , tn) := 〈0|q(t1)q(t2) · · · q(tn)|0〉 (7.32)

for all times t1, t2, . . . , tn ∈ R. This is the vacuum expectation value of the op-
erator product q(t1)q(t2) · · · q(tn). In contrast to the operator function (7.31), the
Wightman functions are classical complex-valued functions. It turns out that

The Wightman functions know all about the quantized harmonic oscillator.

Using the Wightman functions, we avoid the use of operator theory in Hilbert space.
This is the main idea behind the introduction of the Wightman functions.

Proposition 7.4 (i) W2(t, s) =
x2
0
2

· e−iω(t−s) for all t, s ∈ R.
(ii) Wn ≡ 0 if n is odd. For example, W1 ≡ 0 and W3 ≡ 0.
(iii) W4(t1, t2, t3, t4) = W2(t1, t2)W2(t3, t4) + 2W2(t1, t3)W2(t2, t4) for all time

points t1, t2, t3, t4 ∈ R.
(iv) Wn(t1, t2, . . . , tn)† = W (tn, . . . , t2, t1) for all times t1, t2, . . . tn and all pos-

itive integers n.
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Proof. We will systematically use the orthonormal system ϕ0, ϕ1, . . . introduced
on page 433 together with aϕ0 = 0, a†ϕ0 = ϕ1 and

aϕn =
√

n ϕn−1, a†ϕn =
√

n + 1 ϕn+1, n = 1, 2, . . .

Recall that the vacuum state ϕ0 is also denoted by |0〉. The computation of vacuum
expectation values becomes extremely simple when using the intuitive meaning of
the operator a (resp. a†) as a particle creation (resp. annihilation) operator. Let us
explain this by considering a few typical examples. First let us show that most of
the vacuum expectation values vanish.

• The state a†a†ϕ0 contains two particles. Hence

〈ϕ0|a†a†ϕ0〉 = const · 〈ϕ0|ϕ2〉 = 0,

by orthogonality.
• The state aa†a†ϕ0 contains one particle. Hence

〈ϕ0|aa†a†ϕ0〉 = const · 〈ϕ0|ϕ1〉 = 0.

• Aaϕ0 = 0 for arbitrary expressions A, since aϕ0 = 0.
• Analogously, aaaa†a†ϕ0 = 0. In fact,

aaaa†a†ϕ0 = a(aaa†a†)ϕ0 = const · aϕ0 = 0.

Formally, the state aaaa†a†ϕ0 contains “2 minus 3” particles. In general, states
with a ‘negative’ number of particles are equal to zero.

Therefore, it only remains to compute vacuum expectation values 〈ϕ0|Aϕ0〉 where
the state Aϕ0 contains no particle.

This means that A is a product of creation and annihilation operators
where the number of creation operators equals the number of annihilation
operators.

The following examples will be used below.

• The state aa†ϕ0 contains no particle. Here,

aa†ϕ0 = aϕ1 = ϕ0. (7.33)

Hence 〈ϕ0|aa†ϕ0〉 = ϕ0|ϕ0〉 = 1.
• The state aaa†a†ϕ0 contains no particle. Explicitly,

aaa†a†ϕ0 = aaa†ϕ1 =
√

2 aaϕ2 = 2aϕ1 = 2ϕ0. (7.34)

Hence 〈ϕ0|aaa†a†ϕ0〉 = 2.
• Similarly,

aa†aa†ϕ0 = aa†aϕ1 = aa†ϕ0 = aϕ1 = ϕ0. (7.35)

Hence 〈aa†aa†ϕ0〉 = 1.
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Ad (i). To simplify notation, set

aj :=
x0e

−iωtj

√
2

a, a†
j :=

x0e
iωtj

√
2

a†.

We have W2(t1, t2) = 〈ϕ0|Aϕ0〉 with the state

Aϕ0 = (a†
1 + a1)(a

†
2 + a2)ϕ0.

Only the state a1a
†
2ϕ0 gives a non-vanishing contribution to the Wightman function

W2. By (7.33), W2(t1, t2) is equal to

〈ϕ0|a1a
†
2ϕ0〉 =

x2
0

2
· e−iωt1eiωt2〈ϕ0|aa†ϕ0〉 =

x2
0

2
· e−iω(t1−t2).

Ad (ii). First note that 〈ϕ0|(a† + a)ϕ0〉 = 〈ϕ0|ϕ1〉 = 0. The state

Aϕ0 := (a†
1 + a1)(a

†
2 + a2)(a

†
3 + a3)ϕ0

is the sum of particle states with an odd number of particles. Hence we obtain
〈ϕ0|Aϕ0〉 = 0, by orthogonality. The same is true for an odd number of factors

(a†
j + aj).

Ad (iii). We have W4(t1, t2, t3, t4) = 〈ϕ0|Aϕ0〉 with the state

Aϕ0 := (a†
1 + a1)(a

†
2 + a2)(a

†
3 + a3)(a

†
4 + a4) = a1a2a

†
3a

†
4 + a1a

†
2a3a

†
4 + . . .

The dots denote terms whose contribution to W4 vanishes. By (7.34) and (7.35),
W4(t1, t2, t3, t4) is equal to

〈ϕ0|a1a2a
†
3a

†
4ϕ0〉 + 〈ϕ0|a1a

†
2a3a

†
4ϕ0〉 = 2W2(t1, t3)W2(t2, t4)

+W2(t1, t2)W2(t3, t4).

Ad (iv). Since the operator Q(t) is formally self-adjoint,

〈ϕ0|Q(s)Q(t)ϕ0〉 = 〈Q(t)Q(s)ϕ0|ϕ0〉 = 〈ϕ0|Q(t)Q(s)ϕ0〉†.

Hence W2(s, t) = W2(t, s)
†. The general case proceeds analogously. �

Similar arguments for computing vacuum expectation values via creation
and annihilation operators are frequently used in quantum field theory.

Theorem 7.5 (i) Equation of motion: For any s ∈ R, the 2-point Wightman func-
tion t �→ W2(t, s) satisfies the classical equation of motion for the harmonic oscil-
lator, that is,

∂2W2(t, s)

∂t2
+ ω2W2(t, s) = 0, t ∈ R.

(ii) Reconstruction property: For all times t, s ∈ R,

q(t − s) =

√
2

x0
(W2(t, s)a + W2(s, t)a

†). (7.36)
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Relation (7.5) tells us that the knowledge of the 2-point Wightman function
W2 allows us to reconstruct the quantum dynamics of the harmonic oscillator.
Proof. Note that q̈(t) + ω2q(t) = 0, and hence

∂2W (t, s)

∂2t
+ ω2W (t, s) = 〈ϕ0|(q̈(t) + ω2q(t))q(s)ϕ0〉 = 0.

�

Perspectives. In 1956 Wightman showed that it is possible to base quantum
field theory on the investigation of the vacuum expectation values of the products of
quantum fields. These vacuum expectation values are called Wightman functions.
The crucial point is that the Wightman functions are highly singular objects in
quantum field theory. In fact, they are generalized functions.25 However, they are
also boundary values of holomorphic functions of several complex variables. This
simplifies the mathematical theory. Using a similar construction as in the proof

of the Gelfand–Naimark–Segal (GNS) representation theorem for C∗-algebras in
Hilbert spaces, Wightman proved a reconstruction theorem which shows that the
quantum field (as a Hilbert-space valued distribution) can be reconstructed from
its Wightman distributions. Basic papers are:

A. Wightman, Quantum field theories in terms of vacuum expectation
values, Phys. Rev. 101 (1956), 860–866.

R. Jost, A remark on the CPT-theorem, Helv. Phys. Acta 30 (1957), 409–
416 (in German).

F. Dyson, Integral representations of causal commutators, Phys. Rev.
110(6) (1958), 1460–1464.

A. Wightman, Quantum field theory and analytic functions of several com-
plex variables, J. Indian Math. Soc. 24 (1960), 625–677.

H. Borchers, On the structure of the algebra of field operators, Nuovo
Cimento 24 (1962), 214–236.

A. Uhlmann, Über die Definition der Quantenfelder nach Wightman und
Haag (On the definition of quantum fields according to Wightman and
Haag), Wissenschaftliche Zeitschrift der Karl-Marx-Universität Leipzig
11(1962), 213–217 (in German).

A. Wightman and L. G̊arding, Fields as operator-valued distributions in
relativistic quantum theory, Arkiv för Fysik 28 (1964), 129–189.

R. Haag and D. Kastler, An algebraic approach to quantum field theory,
J. Math. Phys. 5 (1964), 848–861.

K. Hepp, On the connection between the LSZ formalism and the Wightman
field theory, Commun. Math. Phys. 1 (1965)(2), 95–111.

H. Araki and R. Haag, Collision cross sections in terms of local observables,
Commun. Math. Phys. 4(2) (1967), 7–91.

O. Steinmann, A rigorous formulation of LSZ field theory, Commun. Math.
Phys. 10 (1968), 245–268.

R. Seiler, Quantum theory of particles with spin zero and one half in
external fields, Commun. Math. Phys. 25 (1972), 127–151.

H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann.
Inst. Poincaré A 19(3) (1973), 211–295.

25 See Sect. 15.6 of Vol. I.
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K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions
I, II, Commun. Math. Phys. 31 (1973), 83–112; 42 (1975), 281–305.

D. Buchholz, The physical state space of quantum electrodynamics, Com-
mun. Math. Phys. 85 (1982), 49–71.

J. Glimm and A. Jaffe, Quantum Field Theory and Statistical Mechanics:
Expositions, Birkhäuser, Boston, 1985.

D. Buchholz, On quantum fields that generate local algebras, J. Math.
Phys. 31 (1990), 1839–1846.

D. Buchholz, M. Porrmann, and U. Stein (1991), Dirac versus Wigner:
towards a universal particle concept in local quantum field theory, Phys.
Lett. 267 B(39 (1991), 377–381.

J. Fröhlich, Non-Perturbative Quantum Field Theory: Mathematical As-
pects and Applications, Selected Papers, World Scientific, Singapore, 1992.

D. Buchholz and R. Verch, Scaling algebras and renormalization group in
algebraic quantum field theory, Rev. Math. Phys. 7 (1995), 1195–2040.

S. Doplicher, K. Fredenhagen, and J. Roberts, The structure of space-time
at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995),
187–220.

As an introduction to axiomatic quantum field theory, we recommend the following
monographs:

N. Bogoliubov et al., Introduction to Axiomatic Quantum Field Theory,
Benjamin, Reading, Massachusetts, 1975.

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer,
Berlin, 1996.

H. Araki, Mathematical Theory of Quantum Fields, Oxford University
Press, New York, 1999.

C. Bär, N. Ginoux, and F. Pfäffle, Wave Equations on Lorentzian Mani-
folds and Quantization, European Mathematical Society, 2007.

We also recommend:

R. Streater and R. Wightman, PCT, Spin, Statistics, and All That, Ben-
jamin, New York, 1968.

M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol.
2 (the mathematical structure of Wightman distributions), Vol. 3 (the
Haag–Ruelle scattering theory), Academic Press, New York, 1972.

B. Simon, The P (ϕ)2-Euclidean Quantum Field Theory, Princeton Univer-
sity Press, 1974 (constructive quantum field theory for a special nontrivial
model in a 2-dimensional space-time).

J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics,
Springer, New York, 1981 (constructive quantum field theory based on
the use of functional integrals).

N. Bogoliubov et al., General Principles of Quantum Field Theory, Kluwer,
Dordrecht, 1990.

In recent years, Klaus Fredenhagen (Hamburg University) has written a series of im-
portant papers together with his collaborators. The idea is to combine the operator-
algebra methods of axiomatic quantum field theory (due to G̊arding–Wightman and
Haag–Kastler) with the methods of perturbation theory, by using formal power se-
ries expansions. We refer to:
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M. Dütsch and K. Fredenhagen, A local perturbative construction of ob-
servables in gauge theories: The example of QED (quantum electrodynam-
ics), Commun. Math. Phys. 203 (1999), 71–105.

R. Brunetti and K. Fredenhagen, Micro-local analysis and interacting
quantum field theories: renormalization on physical backgrounds, Com-
mun. Math. Phys. 208 (2000), 623–661.

M. Dütsch and K. Fredenhagen, Algebraic quantum field theory, perturba-
tion theory, and the loop expansion, Commun. Math. Phys. 219(1) (2001),
5–30.

M. Dütsch and K. Fredenhagen, The master Ward identity and the gener-
alized Schwinger–Dyson equation in classical field theory, Commun. Math.
Phys. 243 (2003), 275–314.

R. Brunetti, K. Fredenhagen, and R. Verch, The generally covariant local-
ity principle – a new paradigm for local quantum field theory, Commun.
Math. Phys. 237 (2003), 31–68.

R. Brunetti and K. Fredenhagen, Towards a background-independent for-
mulation of perturbative quantum gravity, pp. 151–157. In: B. Fauser, J.
Tolksdorf, and E, Zeidler (Eds.), Quantum Gravity: Mathematical Models
and Experimental Bounds, Birkhäuser, Basel, 2006.

K. Fredenhagen, K. Rehren, and E. Seiler, Quantum field theory: where
we are. Lecture Notes in Physics 721 (2007), 61–87
Internet 2006: http://arxiv.org/hep-th/0603155

We also recommend the lectures given by Klaus Fredenhagen at Hamburg Univer-
sity. These lectures are available on the Internet:

http://unith.desy.de/research/aqft/lecture-notes

Furthermore, we recommend the lectures on quantum field theory given by Arthur
Jaffe at Harvard University:

A. Jaffe, Introduction to Quantum Field Theory. Lecture Notes, partially
available at: www.rathurjaffe.com/Assets/pdf/IntroQFT.pdf

7.3.6 The Correlation Functions

In contrast to the Wightman functions, the correlation functions reflect
causality.

Folklore

Parallel to (7.32), we now define the n-point correlation function (also called the
n-point Green’s function) by setting

Cn(t1, t2, . . . , tn) := 〈0|T (q(t1)q(t2) · · · q(tn))|0〉 (7.37)

for all times t1, t2, . . . , tn ∈ R. Here, the symbol T denotes the time-ordering oper-
ator, that is, we define

T (q(t1)q(t2) · · · q(tn)) := q(tπ(1))q(tπ(2)) · · · q(tπ(n))

where the permutation π of the indices 1, 2, . . . , n is chosen in such a way that
tπ(1) ≥ tπ(2) ≥ . . . ≥ tπ(n). For example, using the slightly modified Heaviside

function θ∗, we obtain26

26 We set θ∗(t) := 1 if t > 0, θ∗(t) := 0 if t < 0, and θ∗(0) := 1
2
.
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C2(t, s) = θ∗(t − s)W2(t, s) + θ∗(s − t)W2(s, t)) =
x2

0

2
· e−iω|t−s| (7.38)

for all t, s ∈ R. This relates the 2-point correlation function C2 to the 2-point
Wightman function W2 by taking causality into account. In particular, we have
C2(t, s) = W2(t, s) if t ≥ s.

Theorem 7.6 For any s ∈ R, the 2-point correlation function t �→ C2(t, s) satisfies
the inhomogeneous classical equation of motion for the harmonic oscillator, that is,

∂2C2(t, s)

∂t2
+ ω2C2(t, s) =

�

mi
· δ(t − s), t ∈ R, (7.39)

in the sense of tempered distributions on the real line.

This theorem tells us that the function F (t) := mi
�

·C2(t, 0) satisfies the differential
equation

F̈ (t) + ω2F (t) = δ(t), t ∈ R.

In terms of mathematics, the function F is a fundamental solution of the differential

operator d2

dt2
+ ω2, in the sense of tempered distributions (see Sect. 11.7 of Vol. I).

The language of mathematicians. In order to prove Theorem 7.6, we will
use the theory of generalized functions (distributions) introduced in Chap. 11 of
Vol. I. Let ψ ∈ S(R). Integrating by parts twice, we get

Z ∞

s

e−iω(t−s)ψ̈(t)dt = −ψ̇(s) +

Z ∞

s

iωe−iω(t−s)ψ̇(t)dt

= −ψ̇(s) − iωψ(s) − ω2

Z ∞

s

e−iω(t−s)ψ(t)dt.

Similarly,
Z s

−∞
e−iω(s−t)ψ̈(t)dt = ψ̇(s) − iωψ(s) − ω2

Z s

−∞
e−iω(s−t)ψ(t)dt.

Hence
Z ∞

−∞
e−iω|t−s| ψ̈(t)dt = −2iωψ(s) − ω2

Z ∞

−∞
e−iω|t−s| ψ(t)dt.

In terms of distribution theory, this is equivalent to

∂2e−iω|t−s|

∂t2
+ ω2e−iω|t−s| = −2iωδ(t − s), t ∈ R.

�

The language of physicists. We want to show how to obtain the claim of
Theorem 7.6 by using Dirac’s delta function in a formal setting.27 For fixed s ∈ R,
consider

C(t) := θ∗(t − s)W (t) + θ∗(s − t)Z(t), t ∈ R.

Differentiating this with respect to time t by means of the product rule and noting
that θ̇∗(t) = δ(t), we get

Ċ(t) = δ(t − s)W (t) − δ(s − t)Z(t) + θ∗(t − s)Ẇ (t) + θ∗(s − t)Ż(t).

27 Both the formal Dirac calculus and its relations to the rigorous theory are thor-
oughly investigated in Sect. 11.2ff of Vol. I.
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Using δ(t − s) = δ(s − t) and δ(t) = 0 if t �= 0, we obtain

Ċ(t) = δ(t − s)(W (s) − Z(s)) + θ∗(t − s)Ẇ (t) + θ∗(s − t)Ż(t).

Hence

C̈(t) = δ̇(t − s)(W (s) − Z(s)) + δ(t − s)(Ẇ (s) − Ż(s))

+θ∗(t − s)Ẅ (t) + θ∗(s − t)Z̈(t).

Choosing C(t) := C2(t) and

W (t) := W2(t, s) =
x2

0

2
e−iω(t−s)

together with Z(t) := W2(s, t), we get the differential equation (7.39) above.
The physical meaning of correlation functions for the harmonic os-

cillator. Let ϕ ∈ L2(R) with 〈ϕ|ϕ〉 = 1. We regard ϕ as a physical state of the
quantized harmonic oscillator on the real line. The operator function q = q(t), t ∈ R

from (7.31) on page 451 describes the motion of the quantum particle. According
to the general approach introduced in Sect. 7.9 of Vol. I, we assign to the state ϕ
the following real numbers:

(i) Mean position of the particle in the state ϕ at time t: q̄(t) := 〈ϕ|q(t)|ϕ〉.
(ii) Mean fluctuation of the particle position at time t:

Δq(t) :=
p

〈ϕ|(q(t) − q̄(t))2ϕ〉.

(iii) Correlation coefficient: For t, s ∈ R, we define

γ(t, s) :=
(q(t) − q̄(t))(q(s) − q̄(s))

Δq(t)Δq(s)
.

By the Schwarz inequality, |γ(t, s)| ≤ 1. If |γ(t, s)| = 1 (resp. γ(t, s) = 0), then
the position of the particle in the state ϕ at time t is strongly correlated (resp.
not correlated) to the position in the state ϕ at time s.

(iv) Causal correlation coefficient:

γcausal(t, s) := γ(t, s) if t ≥ s.

Furthermore, γcausal(t, s) := γ(s, t) if s ≥ t.
(v) Transition amplitude: Let ϕ, ψ ∈ L2(R) with 〈ϕ|ϕ〉 = 〈ψ|ψ〉 = 1. The complex

number 〈ψ|q(t)ϕ〉 is called the transition amplitude (for the position) from the
state ϕ to the state ψ at time t.

To illustrate this, consider the ground state ϕ0 of the harmonic oscillator. Then
W2(t, s) = �

2mω
e−iω(t−s). Thus, in the ground state, we have:

• Mean position q̄(t) = 0.

• Mean fluctuation: Δq(t) =
p

〈ϕ0|q(t)q(t)ϕ0〉 =
p

W2(t, t) =
q

�

2mω
.

• Correlation coefficient:

γ(t, s) =
W2(t, s)

p

W2(t, t)
p

W2(s, s)
= e−iω(t−s), t ≥ s,

and γcausal(t, s) = e−iω|t−s|. Hence |γ(t, s)| = 1. This means that, in the ground
state, the position of the quantum particle at time t is strongly correlated to the
position at time s.
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• Transition amplitude from the state ϕ0 to the state ϕn:

〈ϕ1|q(t)ϕ0〉 = eiωt, 〈ϕn|q(t)ϕ0〉 = 0, n = 2, 3, 2, . . .

By (7.29), the transition probability γn0 for passing from the state ϕ0 to the state
ϕn during the time interval [t1, t2] is proportional to |〈ϕn|q(0)ϕ0〉|2. Explicitly,

γ10 = ω2e2(t2−t1)

6πε0c3m
and γn0 = 0 if n = 2, 3, . . .

7.4 Schrödinger’s Quantum Mechanics

In particular, I would like to mention that I was mainly inspired by the
thoughtful dissertation of Mr. Louis de Broglie (Paris, 1924). The main
difference here lies in the following. De Broglie thinks of travelling waves,
while, in the case of the atom, we are led to standing waves. . . I am most
thankful to Hermann Weyl with regard to the mathematical treatment of
the equation of the hydrogen atom.28

Erwin Schrödinger, 1926

7.4.1 The Schrödinger Equation

In 1926 Schrödinger invented wave quantum mechanics based on a wave function
ψ = ψ(x, t). The Schrödinger equation for the motion of a quantum particle of mass
m on the real line is given by

i�ψt = − �
2

2m
ψxx + Uψ. (7.40)

Explicitly, the Schrödinger equation reads as

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂2x
+ U(x)ψ(x, t).

Schrödinger’s quantization. The Schrödinger equation (7.40) is obtained by
applying Schrödinger quantization to the classical energy equation

E =
p2

2m
+ U. (7.41)

This means that we replace the classical momentum p and the classical energy E
by differential operators. Explicitly,

E ⇒ i�
∂

∂t
, p ⇒ −i�

∂

∂x
.

From (7.41) we get

i�
∂

∂t
= − �

2

2m

∂2

∂x2
+ U.

28 E.Schrödinger, Quantization as an eigenvalue problem (in German), Ann. Phys.
9 (1926), 361–376. See also E. Schrödinger, Collected Papers on Wave Mechanics,
Blackie, London, 1928.



460 7. Quantization of the Harmonic Oscillator

Applying this to the function ψ, we obtain the one-dimensional Schrödinger equa-
tion (7.40). Schrödinger generalized this in a straightforward manner to three di-
mensions, and he computed the spectrum of the hydrogen atom.

The physical interpretation of the wave function ψ. If the potential U
vanishes, U ≡ 0, then the function

ψ0(x, t) := Ce−iE(p)t/�eipx/�

is a solution of the Schrödinger equation (7.40). Here, C is a fixed complex number,

p is a fixed real number, and E(p) := p2

2m
. The function ψ0 corresponds to a stream

of freely moving electrons on the real line with momentum p and energy E(p).
There arises the following question:

What is the physical meaning of the function ψ = ψ(x, t) in the general
case?

Interestingly enough, Schrödinger did not know the answer when publishing his
paper in 1926. The answer was found by Born a few months later.

By applying the Schrödinger equation to scattering processes, Born discov-
ered the random character of quantum processes.

According to Born, we have to distinguish the following two cases:

(i) Single quantum particle: Suppose that 0 <
R

R
|ψ(x)|2dx < ∞. Then, the value

�(x, t) :=
|ψ(x, t)|2

R

R
|ψ(x, t)|2dx

represents the particle probability density at position x at time t. That is, the
value

Z

J

�(x, t)dx

is equal to the probability of finding the particle in the interval J at time t.
Naturally enough,

R

R
�(x, t)dx = 1. If we measure the position x of the quantum

particle, then the mean position x̄ and the fluctuation Δx of the position at
time t are given by

x̄(t) =

Z

R

x�(x, t)dx

and

(Δx)2 = (x − x̄)2 =

Z

R

(x − x̄)2�(x, t)dx.

By definition, Δx is non-negative. In the theory of probability, a fundamental
inequality due to Chebyshev (1821–1894) tells us that

P (x̄ − rΔx ≤ x ≤ x̄ + rΔx) ≥ 1 − 1

r2

for all r > 0. In particular, choose r = 4. Then this inequality tells us that the
probability of measuring the position x of the quantum particle in the interval
[x̄ − 4Δx, x̄ + 4Δx] is larger than 1 − 1

16
= 0.93.
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(ii) Stream of quantum particles: Suppose that
R

R
|ψ(x, t))|2dx = ∞. Then, the

function ψ corresponds to a stream of particles on the real line with the particle
density

�(x, t) := |ψ(x, t)|2, x ∈ R, t ∈ R,

and the current density vector

J(x, t) = J (x, t)e, x ∈ R, t ∈ R

at the point x at time t. Here, the unit vector e points in direction of the
positive x-axis, and we define

J :=
i�

2m
(ψψ†

x − ψ†ψx).

This definition is motivated by the fact that each smooth solution ψ of the
Schrödinger equation (7.40) satisfies the following conservation law29

�t + div J = 0. (7.42)

Explicitly, div J = Jx. For a < b, this implies the relation

Z b

a

�(x, t)dx = J (a, t) − J (b, t)

which describes the change of the particle number on the interval [a, b] by the
particle stream. For example, the function

ψ0(x, t) = Ce−iE(p)t/�eipx/�

corresponds to a stream of quantum particles with the constant particle density
�(x, t) = |C|2, the velocity v = p/m, and the current density vector

J = v�e.

There exist fascinating long-term developments in mathematics. In his books “Ge-
ometry“ and “Algebra” from 1550 and 1572, respectively, Bombielli (1526–1572)
systematically used the symbol

√
−1 in order to solve algebraic equations of third

and fourth order. Almost 400 years later, the physicist Schrödinger used the number
i =

√
−1 in order to formulate the basic equations of quantum mechanics. We are

going to show that the use of complex numbers is substantial for quantum physics.
Freeman Dyson writes in his foreword to Odifreddi’s book:30

One of the most profound jokes of nature is the square root of −1 that the
physicist Erwin Schrödinger put into his wave equation in 1926 . . . The
Schrödinger equation describes correctly everything we know about the be-
havior of atoms. It is the basis of all of chemistry and most of physics. And
that square root of −1 means that nature works with complex numbers.
This discovery came as a complete surprise, to Schrödinger as well as to
everybody else. According to Schrödinger, his fourteen-year-old girlfriend
Itha Junger said to him at the time: “Hey, you never even thought when

29 In fact, �t = (ψψ†)t = ψtψ
† + ψψ†

t . By (7.40), �t = −Jx.
30 P. Odifreddi, The Mathematical Century: The 30 Greatest Problems of the Last

100 Years, Princeton University Press, Princeton, New Jersey, 2004. Reprinted
by permission of Princeton University Press.
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you began that so much sensible stuff would come out of it.” All through
the nineteenth century, mathematicians from Abel to Riemann and Weier-
strass had been creating a magnificent theory of functions of complex vari-
ables. They had discovered that the theory of functions became far deeper
and more powerful if it was extended from real to complex numbers. But
they always thought of complex numbers as an artificial construction, in-
vented by human mathematicians as a useful and elegant abstraction from
real life. It never entered their heads that they had invented was in fact
the ground on which atoms move. They never imagined that nature had
got there first.

In what follows, we want to show that the notion of Hilbert space is an appropriate
setting for describing quantum mechanics in terms of mathematics. Originally, the
special Hilbert space l2 (as an infinite-dimensional variant of R

n) was introduced by
Hilbert in the beginning of the 20th century in order to study eigenvalue problems
for integral equations.

7.4.2 States, Observables, and Measurements

The Hilbert space approach. In 1926, the young Hungarian mathematician von
Neumann Janos came to Göttingen as Hilbert’s assistant.31 In Göttingen, von Neu-
mann learned about the new quantum mechanics of physicists. It was his goal to
give quantum mechanics a rigorous mathematical basis. As a mathematical frame-
work, he used the notion of Hilbert space. For example, in the present case of the
motion of a quantum particle on the real line, we choose the Hilbert space L2(R)
with the inner product

〈ψ|χ〉 =

Z

R

ψ(x)†χ(x)dx for all ψ, χ ∈ L2(R),

and the norm ||ψ|| :=
p

〈ψ|ψ〉. The general terminology reads as follows.

(S) States: Each nonzero element ψ of L2(R) is called a state. In terms of physics,
this describes a state of a single quantum particle on the real line. Two nonzero
elements ψ, χ of L2(R) represent equivalent states iff there exists a nonzero
complex number μ with

ψ = μχ.

In terms of physics, equivalent states represent the same physical state of the
particle. The state ψ is called normalized iff ||ψ|| = 1.

(O) Observables: The linear, formally self-adjoint operators

A : D(A) ⊆ X → X

are called formal observables. Explicitly, this means that the domain of defi-
nition D(A) is a linear subspace of X. Moreover, for all ψ, χ ∈ D(A) and all
complex numbers α, β, we have

31 Von Neumann (1903–1957) was born in Budapest (Hungary). He studied math-
ematics and chemistry in Berlin, Budapest, and Zurich. The German (resp. En-
glish) translation of the Hungarian name ‘Janos’ is Johann (resp. John). Von
Neumann was an extraordinarily gifted mathematician. He was known for his
ability to understand mathematical subjects and to solve mathematical prob-
lems extremely fast. In 1933, von Neumann got a professorship at the newly
founded Institute for Advanced Study in Princeton, New Jersey (U.S.A.).
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A(αψ + βχ) = αAψ + βAχ

together with the symmetry condition 〈ψ|Aχ〉 = 〈Aψ|χ〉.32
(M) Measurements: If we measure the formal observable A in the normalized state

ψ, then we get the mean value

Ā := 〈ψ|Aψ〉,

and the mean fluctuation33

ΔA := ||(A − ĀI)ψ||.

(C) Correlation coefficient: Let A, B : S(R) → S(R) be two formal observables.
The correlation coefficient between A and B in the state ψ is defined by

γ :=
Cov(A, B)

ΔA · ΔB

together with the covariance

Cov(A, B) := (A − ĀI)(B − B̄I) = 〈ψ|(A − ĀI)(B − B̄I)ψ〉.

Hence Cov(A, B) = 〈(A − ĀI)ψ|(B − B̄I)ψ〉.
By the Schwarz inequality, |γ| ≤ 1.

• If γ = 0, then there is no correlation between the formal observables A and B.
In other words, A and B are independent formal observables.

• If |γ| = 1, then the correlation between A and B is large. That is, the formal
observable A depends strongly on the formal observable B.

Proposition 7.7 The mean value is a real number.

This is a consequence of 〈ψ|Aψ〉† = 〈Aψ|ψ〉 = 〈ψ|Aψ〉. �

The following result underlines the importance of eigenvalue problems in quan-
tum mechanics.

Proposition 7.8 Suppose that the normalized state ψ is an eigenvector of the for-
mal observable A with eigenvalue λ,

Aψ = λψ.

Then, the measurement of A in the state ψ yields Ā = λ and ΔA = 0.

32 For a deeper mathematical analysis, von Neumann introduced the stronger no-
tion of an observable. By definition, an observable is an essentially self-adjoint
operator (see Vol. I, p. 677).

33 Explicitly, (ΔA)2 = 〈Aψ − Āψ|Aψ − Āψ〉. If Aψ ∈ D(A), then

(ΔA)2 = 〈ψ|(A − ĀI)2ψ〉 = (A − ĀI)2.
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In this case, we say that λ is a sharp value of the formal observable A. For the
proof, 〈ψ|Aψ〉 = λ〈ψ|ψ〉 = λ, and Aψ − Āψ = Aψ − λψ = 0. �

Examples. The operators Q, P, H : S(R) → S(R) are defined by

(Qψ)(x) := xψ(x), (Pψ)(x) = −i�ψ′(x), x ∈ R,

for all functions ψ ∈ S(R). We call Q and P the position operator and the momen-
tum operator, respectively. Moreover, we introduce the energy operator (Hamilto-
nian)

H :=
P 2

2m
+ U,

where we assume that U ∈ S(R). Then the fundamental operator equation

i�ψ̇ = Hψ

coincides with the Schrödinger equation (7.40).

Proposition 7.9 The operators Q, P, H : S(R) → S(R) are formally self-adjoint
on the Hilbert space L2(R), and there holds the commutation relation

QP − PQ = i�I on S(R). (7.43)

Proof. The formal self-adjointness of Q and P together with (7.43) are proved on
page 436. Let ψ ∈ S(R). The formal self-adjointness of H follows from

〈ψ|P 2ψ〉 = 〈Pψ|Pψ〉 = 〈P 2ψ|ψ〉.

Hence 〈ψ|Hψ〉 = 〈Hψ|ψ〉. �

7.4.3 The Free Motion of a Quantum Particle

The classical motion of a particle of mass m on the real line is governed by the

Hamiltonian H := p2

2m
together with the canonical equations

q̇ = Hp =
p

m
, ṗ = −Hq = 0.

For given initial position q(0) = q0 and initial velocity q̇(0) = v, the unique solution
reads as q(t) = q0 + vt for all times t ∈ R with the total energy

E(p) :=
p2

2m
=

mv2

2
.

The free motion of a quantum particle on the real line is governed by the Hamilto-
nian operator

H :=
P 2

2m
. (7.44)

Recall that P = −i� d
dx

, and hence

H = − �
2

2m

d2

dx2
.
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At this point, we regard the operators P and H as differential operators which act
on smooth functions (or on generalized functions).34 For the functional-analytic
approach to quantum mechanics, it is important to appropriately specify the domain
of definition of the operators under consideration. This will be discussed below. For
fixed nonzero complex number C, define the functions

ϕp(x) := Ceipx/� , ψp(x, t) = ϕp(x)e−itE(p))/� , x, t ∈ R.

Then the function ψp satisfies the Schrödinger equation

i�ψ̇p = Hψp.

Moreover, for all parameters p ∈ R, we have

Pϕp = pϕp, Hϕp = E(p)ϕp.

These equations remain valid if we replace ϕp by ψp. From the physical point of
view, the function ψp describes a homogeneous stream of quantum particles (e.g.,
electrons) with particle density � = |C|2 and velocity v. Note that the functions ϕp

and x �→ ψp(x, t) do not live in the Hilbert space L2(R).
Let ϕ, χ ∈ S(R). Normalizing the function ϕp above by C := 1√

2π�
, we get the

Fourier transform

ϕ̂(p) =

Z

R

ϕp(x)†ϕ(x)dx, p ∈ R

together with the inverse transform

ϕ(x) =

Z

R

ϕp(x)ϕ̂(p)dp, x ∈ R.

The operator F : S(R) → S(R) is bijective (see Vol. I, p. 87). We write ϕ̂ = Fϕ.
This Fourier transform can be uniquely extended to a unitary operator of the form
F : L2(R) → L2(R),s that is, we have

〈ϕ|χ〉 = 〈ϕ̂|χ̂〉, for all ϕ, χ ∈ L2(R),

which is called the Parseval equation of the Fourier transform.
The quantum dynamics of a freely moving particle. Let us now study

the three operators

• P : S(R) → S(R) (momentum operator),
• Q : S(R) → S(R) position operator), and
• H : S(R) → S(R) (Hamiltonian).

These operators are formally self-adjoint on the Hilbert space L2(R). In the Fourier
space, the operators P and H correspond to the following multiplication operators

(P̂ ϕ̂)(p) = pϕ̂(p), (Ĥϕ̂)(p) = E(p)ϕ̂(p), p ∈ R.

This holds for all ϕ ∈ S(R), and hence for all ϕ̂ ∈ S(R). For given ϕ0 ∈ S(R), the
quantum dynamics

ψ(t) = e−iHt/�ϕ0, t ∈ R

is given in the Fourier space by the equation

34 The Schwartz S ′(R) of tempered distributions and the Schwartz space D′(R) of
distributions are investigated in Sect. 11.3 of Vol. I. Here, S ′(R) ⊂ D′(R).
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ψ̂(p, t) = e−iE(p)t/�ϕ̂0(p), p ∈ R

for each time t ∈ R. Transforming this back to the original Hilbert space L2(R) by
using the Fourier transform, we get the quantum dynamics

e−itH0/�ϕ0 = F−1ψ̂(t) for all t ∈ R. (7.45)

We have ψ(t) ∈ S(R) for all times t ∈ R, and this function satisfies the Schrödinger
equation for all times.35

The full quantum dynamics. Consider equation (7.45). Observe the fol-
lowing peculiarity. The right-hand side of (7.45) is well-defined for initial states
ϕ0 ∈ L2(R) if we do not use the classical Fourier transform, but the extended
Fourier transform F : L2(R) → L2(R). In this sense, we understand the dynamics

ψ(t) = e−itH/�ϕ0, t ∈ R

for all initial states ϕ0 ∈ L2(R). In terms of functional analysis, for any fixed time

t, the operator e−itH/� : L2(R) → L2(R) is unitary. Therefore, e−itH/�ϕ0 makes
sense for all ϕ0 ∈ L2(R). In this general setting, the function

ψ : [0, +∞[→ L2(R)

is continuous, but not necessarily differentiable. Therefore, it can be regarded as a
generalized solution of the Schrödinger equation i�ψ̇(t) = Hψ(t), t ∈ R.

Measurement of observables. Suppose that we are given a normalized state
ϕ ∈ S(R), that is,

||ϕ||2 =

Z

R

|ϕ(x)|2dx = 1.

By the Parseval equation,

||ϕ̂||2 =

Z

R

|ϕ̂(p)|2dp = ||ϕ||2 = 1.

Let us now measure the position, the momentum, and the energy of a quantum
particle on the real line where the particle is in the normalized state ϕ ∈ S(R).

(i) Measurement of position: For the mean value x̄ and the mean fluctuation Δx ≥ 0
of the particle position, we get

x̄ = 〈ϕ|Qϕ〉 =

Z

R

x|ϕ(x)|2dx

and

(Δx)2 = 〈ϕ|(Q − x̄I)2ϕ〉 =

Z

R

(x − x̄)2|ϕ(x)|2dx.

The number
R

J
|ϕ(x)|2dx is the probability for measuring the particle position

in the interval J.

35 Fix t ∈ R. The symbol ψ(t) (resp. ψ̂(t)) stands for the function x �→ ψ(x, t)

(resp. p �→ ψ̂(p, t)) on R.
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(ii) Measurement of momentum: For the mean value p̄ and the mean fluctuation
Δp of the particle momentum, we get

p̄ = 〈ϕ|Pϕ〉 = 〈ϕ̂|P̂ ϕ̂〉 =

Z

R

p |ϕ̂(p)|2dp

and

Δp = 〈ϕ|(P − p̄I)2ϕ〉 =

Z

R

(p − p̄)2|ϕ̂(p)|2dp.

The number
R

J
|ϕ̂(p)|2dp is the probability for measuring the particle momen-

tum in the interval J.
(iii) Measurement of energy: Suppose we are given a measuring instrument which

analyzes the energy of freely moving particles. The measured energy corre-
sponds to the observable H. For the mean value Ē and the mean fluctuation
ΔE of the energy in the normalized state ϕ ∈ S(R), we get

Ē = 〈ϕ|Hϕ〉 = 〈ϕ̂|Ĥϕ̂〉 =

Z

R

E(p)|ϕ̂(p)|2dp

and

ΔE = 〈ϕ|(H − ĒI)2ϕ〉 =

Z

R

(E(p) − Ē)2|ϕ̂(p)|2dp.

The number
Z

E(p)∈J

|ϕ̂(p)|2dp

is the probability for measuring the particle energy in the given energy interval
J. Recall that E(p) = p2/2m. Fix the positive real number E. Then we have
E(p) ≤ E iff |p|2 ≤ 2mE. Thus, the number

Z

|p|≤
√

2mE

|ϕ̂(p)|2dp

is equal to the probability for measuring the energy E(p) of the particle in the
interval [0, E].

The full functional-analytic approach to the free quantum particle will be studied
in Sect. 7.6.4 on page 509.

7.4.4 The Harmonic Oscillator

Let us quantize the classical harmonic oscillator in the sense of Schrödinger’s quan-
tum mechanics. We will see that we obtain the same results as in Heisenberg’s
version of quantum mechanics. In Sect. 7.4.5, we will explain why Schrödinger’s
quantum mechanics is equivalent to Heisenberg’s quantum mechanics. Choosing
ϕ ∈ S(R), recall the definition of the position operator Q and the momentum
operator P ,

(Qϕ)(x) := xϕ(x), (Pϕ)(x) := −i�ϕ′(x) for all x ∈ R.

Quantization means that we replace the classical Hamiltonian function

H(q, p) =
p2

2m
+

mω2q2

2
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by the Hamiltonian operator

H :=
P 2

2m
+

mω2Q2

2
.

The Schrödinger equation for the wave function ψ = ψ(x, t), x, t ∈ R, reads as

i�ψ̇ = Hψ (7.46)

along with the prescribed initial condition ψ(x, 0) = ψ0(x) for all x ∈ R. Explicitly,

i�ψt(x, t) = − �
2

2m
ψxx(x, t) +

mω2x2

2
ψ(x, t), x, t ∈ R.

We are going to show that

The Hamiltonian operator H knows all about the quantized harmonic os-
cillator.

This is a typical feature for all quantum systems. Making the classic Fourier ansatz

ψ(x, t) := ϕ(x)e−iEt/� , x, t ∈ R,

we get the stationary Schrödinger equation

Eϕ = Hϕ (7.47)

for the time-independent function ϕ. Explicitly,

Eϕ(x) = − �
2

2m
ϕ′′(x) +

mω2

2
x2ϕ(x), x ∈ R.

Again let us use the typical length x0 :=
q

�

ωm
.

The eigensolutions of the Hamiltonian. Our mathematical investigation of
the quantized harmonic oscillator will be based on the eigensolutions of the Hamil-
tonian. Motivated by Sect. 7.2, the basic trick is to introduce the two operators
a, a† : S(R) → S(R) by letting

a :=
1√
2

„

Q

x0
+

ix0P

�

«

, a† :=
1√
2

„

Q

x0
− ix0P

�

«

. (7.48)

This forces the crucial factorization

H = �ω(a†a + 1
2
)

of the Hamiltonian operator. Starting from the Gaussian probability density,

�(x) :=
e−x2/2σ2

σ
√

2π
,

with the mean value x̄ = 0 and the mean fluctuation σ := x0√
2
, we define

ϕ0(x) :=
p

�(x) for all x ∈ R.

The following theorem is basic for quantum physics.
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Theorem 7.10 The Hamiltonian H of the quantized harmonic oscillator has the
eigensolutions Hϕn = Enϕn, n = 0, 1, 2, , ... with the energy eigenvalues

En := �ω(n + 1
2
) (7.49)

and the eigenstates

ϕn :=
(a†)n

√
n!

ϕ0.

The system ϕ0, ϕ1, ... forms a complete orthonormal system in the Hilbert space
L2(R).

Proof. To simplify notation, let x0 = 1 by the rescaling x �→ x/x0. The proof
follows then from Sect. 7.2 on page 432. �

Explicitly, for all x ∈ R and n = 0, 1, 2, ..., we have

ϕn(x) =
1

p

2nn!x0
√

π
Hn

„

x

x0

«

exp

(

−1

2

„

x

x0

«2
)

.

Mnemonically, physicists write |En〉 instead of ϕn.

Corollary 7.11 For n = 0, 1, 2, ...,
(i) x̄ = 〈ϕn|Qϕn〉 = 0;
(ii) (Δx)2 = 〈ϕn|(Q − x̄I)2ϕn〉 = x2

0(n + 1
2
);

(iii) p̄ = 〈ϕn|Pϕn〉 = 0;

(iv) (Δp)2 = 〈ϕn|(P − p̄I)2ϕn〉 = �
2

x2
0
(n + 1

2
).

Proof. Let x0 = 1 by the rescaling x �→ x/x0.
Ad (i), (iii). Note that the Hermite functions ϕn are odd or even by (7.8). Hence

Z

R

x|ϕn(x)|2dx = 0,

Z

R

ϕn(x)†ϕ′
n(x)dx = 0.

Ad (ii). Let n = 0, 1, 2, ... By Sect. 7.2,

aϕn+1 =
√

n + 1 ϕn, a†ϕn =
√

n + 1 ϕn+1, a†aϕn = nϕn.

From 2〈ϕn|Q2ϕn〉 = 〈ϕn|(a + a†)2ϕn〉 we get

2〈ϕn|Q2ϕn〉 = 〈ϕn|(a2 + aa† + a†a + a†a†)ϕn〉 = 2n + 1.

In fact, because of 〈ϕn+1|ϕn−1〉 = 0, we obtain

〈ϕn|a2ϕn〉 = 〈a†ϕn|aϕn〉 = 0.

Moreover, 〈ϕn|aa†ϕn〉 = 〈a†ϕn|a†ϕn〉 = n + 1.
Ad (iv). Similarly, 2〈ϕn|P 2ϕn〉 = −�

2〈ϕn|(a − a†)2ϕn〉 = �
2(2n + 1). �

Physical interpretation. Let us discuss some physical consequences.
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(i) Ground state: The state

ψ(x, t) := e−iE0t/�ϕ0(x), t, x ∈ R

represents the lowest-energy state of the harmonic oscillator called ground state
(or vacuum state). The sharp energy of the ground state equals E0 = �/2. For
the mean position x̄ and the mean fluctuation Δx of the particle position in
the ground state, it follows from Corollary 7.11 that

x̄ = 0, Δx = σ =
x0√

2
.

For the mean momentum p̄ and the mean fluctuation Δp of the particle mo-
mentum in the ground state, we get p̄ = 0 and ΔxΔp = �

2
.

(ii) The uncertainty inequality: In the normalized state

ψ(x, t) := e−iEnt/�ϕn(x), n = 0, 1, . . . ,

the particle has the sharp energy En = �ω(n + 1
2
), and

x̄ = 0, Δx = x0

q

n + 1
2

as well as

p̄ = 0, ΔxΔp =
En

ω
= �

`

n + 1
2

´

.

From this we get

ΔxΔp ≥ �

2
.

In 1927 Heisenberg discovered that this inequality is the special case of a fun-
damental law in nature called the uncertainty of position and momentum (see
Sect. 7.4.6 on page 475).

(iii) Measurement of energy: The energy states ϕ0, ϕ1, ... form a complete orthonor-
mal system in the Hilbert space L2(R).36 This means that we have the orthog-
onality relation

〈ϕn|ϕm〉 =

Z

R

ϕn(x)†ϕm(x)dx = δnm, n, m = 0, 1, 2, . . . .

Completeness means that for each χ ∈ L2(R), the Fourier series

χ =

∞
X

n=0

〈ϕn|χ〉ϕn

converges in the Hilbert space L2(R). In other words,

lim
N→+∞

Z

R

˛

˛

˛

˛

χ(x) −
N
X

n=0

〈ϕn|χ〉ϕn(x)

˛

˛

˛

˛

2

dx = 0.

Moreover, for given complex numbers an, the series
P∞

n=0 anϕn converges in
L2(R) iff

36 The properties of complete orthonormal systems in Hilbert spaces are thoroughly
studied in Zeidler (1995a), Sect. 3.1 (see the references on page 1049).
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∞
X

n=0

|an|2 < ∞. (7.50)

In addition, for all χ, ϕ ∈ L2(R), we have the Parseval equation

〈χ|ϕ〉 =
∞
X

n=0

〈χ|ϕn〉〈ϕn|ϕ〉. (7.51)

Suppose now that 〈χ|χ〉 = 1. Then

∞
X

n=0

|〈χ|ϕn〉|2 = 1.

This motivates the following definition. If the particle is in the normalized state
χ, then the number

X

En∈J

|〈ϕn|χ〉|2

is equal to the probability of measuring the energy value E of the particle in
the interval J. In particular, choosing the open interval J :=]−∞, E[, we obtain
the energy distribution function

F(E) :=
X

En<E

|〈ϕn|χ〉|2. (7.52)

In particular, in the state χ we measure the mean energy

Ē =

Z

R

E dF(E) =

∞
X

n=0

En|〈ϕn|χ〉|2

and the mean energy fluctuation

(ΔE)2 =

Z

R

(E − Ē)2dF(E) =

∞
X

n=0

(En − Ē)2|〈ϕn|χ〉|2.

(iv) Self-adjoint extension of the formally self-adjoint Hamiltonian H: Let us define
an operator H : D(H) ⊆ L2(R) → L2(R) by setting

Hψ :=

∞
X

n=0

En〈ϕn|ψ〉ϕn.

Naturally enough, an element ψ ∈ L2(R) belongs to the domain of definition,
D(H), of the operator H iff the infinite series converges. This means that
P∞

n=0 E2
n|〈ϕn|ψ〉|2 < ∞. The operator H : D(H) → L2(R) is an extension

of the operator H : S(R) → L2(R). In fact, if ψ ∈ S(R), then we obtain
〈ϕn|Hψ〉 = 〈Hϕn|ψ〉 = En〈ϕn|ψ〉. Hence

Hψ =
∞
X

n=0

〈ϕn|Hψ〉ϕn =
∞
X

n=0

En〈ϕn|ψ〉ϕn.
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The quantum dynamics of the harmonic oscillator. For each initial state
ψ0 in L2(R) and each time t ∈ R, we define

e−iHt/�ψ0 :=

∞
X

n=0

e−iEnt/�〈ϕn|ψ0〉ϕn.

This series is convergent because of

∞
X

n=0

|e−iEnt/�〈ϕn|ψ0〉|2 =

∞
X

n=0

|〈ϕn|ψ0〉|2 = ||ψ0||2 < ∞.

By definition, the equation

ψ(t) = e−iHt/�ψ0 for all t ∈ R

describes the dynamics of the quantum harmonic oscillator on the real line. The
following theorem motivates this definition.

Theorem 7.12 For each time t ∈ R, the operator e−iHt/� : L2(R) → L2(R) is
unitary.

For given initial value ψ0 ∈ D(H), the function ψ(t) := e−iHt/�ψ0 satisfies the

Schrödinger equation i�ψ̇(t) = Hψ(t) for all times t ∈ R.

Proof. For each ψ0 ∈ L2(R) and all t, s ∈ R,

e−iHs/�(e−i�Ht/�ψ0) =
∞
X

n=0

e−iEns/�e−iEnt/�〈ϕn|ψ0〉ϕn = e−iH(t+s)/�ψ0.

Choosing s = −t, this implies

eiHt/�(e−iHt/�ψ0) = ψ0.

Thus, the operator eitH/� is the inverse operator to the operator e−itH/� on the
Hilbert space L2(R). Moreover, because of |e−iEnt/� | = 1 it follows from the Par-
seval equation that

||e−itH/�ψ0||2 =

∞
X

n=0

|e−itEn/� |2|〈ϕn|ψ0〉|2 = ||ψ0||2.

Therefore, the operator e−iHt/� : L2(R) → L2(R) is bijective and norm preserving,
i.e., this operator is unitary. In particular, if the initial state ψ0 is normalized, then
so is e−iHt/�ψ0 for each time t ∈ R.

Choose now ψ0 ∈ D(H). Formal differentiation with respect to time t yields

i�ψ̇(t) =

∞
X

n=0

Ene−iEnt/�〈ϕn|ψ0〉ϕn.

To justify this formal differentiation, it is sufficient to use the following majorant
series37

37 We refer to Zeidler (1995a), Sect. 5.8 (see the references on page 1049).
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∞
X

n=0

|Ene−iEnt/�〈ϕn|ψ0〉|2 ≤
∞
X

n=0

|En〈ϕn|ψ0〉|2 = ||Hψ0||2 < ∞. �

Transition probabilities. Let ψ0 and ψ1 be two normalized states in the
Hilbert space L2(R). By definition, the real number

τ := |〈ψ1|e−iHt/�ψ0〉|2

represents the transition probability from the initial state ψ0 to the final state ψ1

during the time interval [0, t]. In order to motivate this definition, observe that

• 0 ≤ τ ≤ 1;
• τ = 1 for the final state ψ1 := e−itH/�ψ0;
•
P∞

n=0 τn = 1 if τn corresponds to the final energy state ϕn, i.e.,

τn := |〈ϕn|e−iHt/�ψ0〉|2.

In fact, it follows from the Schwarz inequality that

τ ≤ ||ψ1|| · ||e−itH/�ψ0|| = ||ψ1|| · ||ψ0|| = 1.

Moreover, 〈e−iHt/�ψ0|e−iHt/�ψ0〉 = 〈ψ0|ψ0〉 = 1. Finally,

∞
X

n=0

|〈ϕn|e−iHt/�ψ0〉|2 = ||e−iHt/�ψ0||2 = ||ψ0||2 = 1.

7.4.5 The Passage to the Heisenberg Picture

Using the harmonic oscillator, we want to discuss in which sense the Heisenberg
approach to quantum mechanics is equivalent to the Schrödinger approach.

Formal approach. The basic transformation from the Schrödinger picture to
the Heisenberg picture reads as

ψ(t) �→ ψ(0), A �→ A(t) := eiHt/�Ae−iHt/�

for all times t ∈ R.

(S) Schrödinger picture: In this setting, the states ψ(t) of the quantum harmonic
oscillator on the real line are elements of the Hilbert space L2(R) which depend
on time t,

ψ(t) = e−iHt/�ψ(0), t ∈ R.

The formal observables are formally self-adjoint operators

A : D(A) ⊆ L2(R) → L2(R)

which do not depend on time t. Differentiating the state function t �→ ψ(t)
with respect to time t, we get the Schrödinger equation

i�ψ̇(t) = Hψ(t), t ∈ R.
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(H) Heisenberg picture: Here, the states ψ(0) of the quantum harmonic oscillator
are elements of the Hilbert space L2(R) which do not depend on time t. The
formal observables A(t) are operators on the Hilbert space L2(R) which depend
on time t. Differentiating the function t �→ A(t) with respect to time, we get
the Heisenberg equation

i�Ȧ(t) = A(t)H − HA(t), t ∈ R.

From the physical point of view, we are interested in measurements of quantities
in physical experiments. The point is that both the Schrödinger picture and the
Heisenberg picture yield the same mean values. Explicitly,

Ā(t) = 〈ψ(t)|Aψ(t)〉 = 〈ψ(0)|A(t)ψ(0)〉.

Rigorous approach. Let us start with the Schrödinger picture for the quantum
harmonic oscillator on the real line. Consider the self-adjoint Hamiltonian H :
D(H) ⊆ L2(R) → L2(R) introduced in Sect. 7.4.4. Explicitly,

Hϕ =

∞
X

n=0

En〈ϕn|ϕ〉ϕn.

Here, we have ϕ ∈ D(H) iff this series is convergent in the Hilbert space L2(R).
Define

D0(H) := span{ϕ0, ϕ1, ϕ2, ...},
i.e., D0(H) is the set of finite linear combinations of the eigenfunctions ϕ0, ϕ1, ...
with complex coefficients.

Theorem 7.13 Let A : S(R) → L2(R) be a formally self-adjoint operator which
maps D0(H) into itself. Then, for each ϕ ∈ D0(H) and all times t ∈ R, the expres-
sion

A(t)ϕ := eiHt/�Ae−iHt/�ϕ

is well-defined, and we have the differential equation

i�
d

dt
(A(t)ϕ) = (A(t)H − HA(t))ϕ.

Proof. All of the expressions are well-defined, since they refer to finite linear combi-
nations of the eigenfunctions ϕ0, ϕ1, ... Note that e−iHt/�ϕn is equal to e−iEnt/�ϕn,
and we have Aϕn ∈ D0(H) for all n. �

Example. The transformation of the formal observables

Q, P : S(R) → L2(R)

from the Schrödinger picture to the Heisenberg picture yields

Q(t)ϕ =
x0√

2
(a†eiωt + ae−iωt)ϕ

and

P (t)ϕ =
i�

x0

√
2

(a†eiωt − ae−iωt)ϕ

for all ϕ ∈ D0(H) and all times t ∈ R.
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Proof. To simplify notation, let x0 = � = 1. It follows from the basic relations
eiHtϕn = eiEntϕn and aϕn =

√
n ϕn−1 that

eiHtaϕn = eiEn−1taϕn.

Noting that En = ω(n + 1
2
),

eiHtae−iHtϕn = eiEn−1te−iEntaϕn = e−iωtaϕn.

Similarly, a†ϕn =
√

n + 1 ϕn+1 implies

eiHta†e−iHtϕn = eiEn+1teiEnta†ϕn = eiωta†ϕn.

Summarizing,

eiHtQe−iHtϕn =
1√
2ω

eiHt(a† + a)e−iHtϕn = Q(t)ϕn.

The proof for P proceeds similarly. �

7.4.6 Heisenberg’s Uncertainty Principle

In 1927 Heisenberg discovered that there exists a deep difference between classical
mechanics and quantum mechanics.38 He derived the following fundamental result
in quantum physics:

The classical notion of the trajectory of a particle, which has a precise
position and a precise velocity at the same time, is not meaningful anymore
in quantum mechanics.

Explicitly, for the operators Q, P : S(R) → L2(R) called position operator Q and
momentum operator P , we have the Heisenberg commutation relation

(QP − PQ)ϕ = i�ϕ for all ϕ ∈ S(R). (7.53)

Let ϕ ∈ S(R) be a normalized state in the Hilbert space L2(R). We claim that

ΔxΔp ≥ �

2
. (7.54)

This means that it is impossible to measure precisely the position and the mo-
mentum of the quantum particle in the state ϕ at the same time. The uncertainty
inequality (7.54) follows from (7.53) as a special case of Theorem 10.4 on page 524
of Vol. I.

38 W. Heisenberg, The intuitive meaning of kinematics in quantum mechanics, Z.
Physik 43 (1927), 172–199 (in German).
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7.4.7 Unstable Quantum States and the Energy-Time
Uncertainty Relation

In particle accelerators, many particles are unstable; such so-called reso-
nances only live a very short time.

Folklore

We are going to show that wave packets are unstable in quantum mechanics. There
exists a fundamental inequality between the life-time of the wave packet and its
mean energy fluctuation which is called the energy–time uncertainty relation.

Wave packets and the Fourier transformation. Let E(p) := p2/2m de-
note the energy of a freely moving classical particle on the real line with mass m,
momentum p ∈ R, and velocity v = p/m. For each nonzero complex number C, the
standing plane wave

ψ(x, t) := Ce−itE(p)/� eipx/� , x, t ∈ R

describes a stream of particles with mass m, momentum p, velocity v = p/m, energy
E(p), and particle density � = |C|2. Since |ψ(x, t)|2 = |C|2, the wave function ψ
does not live in the Hilbert space L2(R). However, using the superposition

ψ(x, t) =
1√
2π�

Z ∞

−∞
A(p)e−itE(p)/� eipx/�dp (7.55)

of standing plane waves with different momenta, we can construct so-called wave
packets which live in the Hilbert space L2(R) if the amplitude function A = A(p)
lives in the space S(R). The Fourier transformation yields

A(p)e−iE(p)t/� =
1√
2π�

Z ∞

−∞
ψ(x, t)e−ixp/�dx.

Let us consider a typical example. Choose the Gauss distribution

A(p) =
1

q

Δp
√

2π
exp

„

− (p − p̄)2

4(Δp)2

«

, (7.56)

where the real numbers p̄ and Δp > 0 are given. In order to understand the physics
of wave packets, let us introduce the following quantities

Δx0 :=
�

2Δp
, ΔE :=

(Δp)2

2m
, Δt :=

�

2ΔE
,

and v̄ := p̄/m, x̄ := v̄t, , Ē := p̄2/2m, as well as

Δx = Δx0

s

1 +

„

t

Δt

«2

. (7.57)

The following proposition summarizes the properties of the wave packet.

Proposition 7.14 The absolute value of the wave function ψ from (7.55), (7.56)
is a Gauss function,

|ψ(x, t)|2 =
1

Δx
√

2π
exp

„

− (x − x̄)2

2(Δx)2

«

.

The mean values and mean fluctuations of the position operator Q and the momen-
tum operator P in the state ψ at time t are x̄, Δx, p̄, Δp, respectively.
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This follows by using classical formulas for Gauss–Fresnel integrals. �

This result allows the following physical interpretation. The wave function ψ
lives in the Hilbert space L2(R). It represents a particle with mean momentum p̄,
mean energy Ē, mean fluctuation of momentum Δp and mean fluctuation of energy
ΔE. Moreover, the mean position x̄ = v̄t of the particle moves with the velocity
v̄ = p̄/m called the group velocity of the wave packet. It is quite remarkable that

The wave packet is unstable.

In fact, by (7.57), the mean fluctuations Δx of the position of the particle go to
infinity as time goes to infinity, that is, the particle is spread over the whole real
line after a sufficiently long time. The lifetime of the particle can be measured by
the quantity Δt. According to (7.57), the position fluctuations Δx increase in the

time interval [0, Δt] by the factor
√

2.
The energy-time uncertainty principle. The equation

ΔpΔx =
�

2

for the ground state of a harmonic oscillator represents a special case of the general
momentum-position uncertainty inequality ΔpΔx ≥ �

2
. It shows that the Heisen-

berg uncertainty inequality cannot be improved. Furthermore, we have the equation

ΔEΔt =
�

2

for the Gaussian wave packet. In general, physicists assume that for all unstable
particles, there holds the energy-time uncertainty inequality

ΔEΔt ≥ �

2
(7.58)

for the lifetime Δt of the particle and its energy fluctuation ΔE. In high-energy
particle accelerators, physicists observe frequently so-called resonances. These are
unstable particles of mass Δm which decay after the time Δt. By Einstein’s mass-
energy equivalence, we have

ΔE = c2Δm

where c denotes the speed of light in a vacuum. From (7.58) we get the following
fundamental inequality in particle physics

ΔmΔt ≥ �

2c2

between the mass Δm of a resonance and its lifetime Δt.
The energy-time uncertainty principle is motivated by Einstein’s theory of spe-

cial relativity. Let us explain this. In special relativity, an event corresponds to a
four-vector

(x, y, z, ct)

in Minkowski space. This is a combination of space and time. Similarly, there exists
a combination of momentum (px, py, pz) and energy E described by the four-vector

(px, py, pz,
E

c
).

The momentum-energy uncertainty principle yields
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ΔpxΔx ≥ �

2
, ΔpyΔy ≥ �

2
, ΔpzΔz ≥ �

2
.

Postulating complete relativistic symmetry in nature, we can replace px and x by
E/c and ct, respectively. This yields (7.58).

The energy-time uncertainty inequality represents one of the basic principles
of modern physics. Physicists call the ground state of our world the vacuum. This
ground state cannot be observed in a straight-forward way. However, there exist
quantum fluctuations of the vacuum which can be observed as physical effects; for
example, this concerns the fine structure of the energy spectrum of the hydrogen
atom, the anomalous magnetic moment of the electron, and the vaporization of
black holes in the universe. To understand this, one needs the methods of quantum
field theory.

7.4.8 Schrödinger’s Coherent States

There arises the following question: Is it possible to construct a stable time-
dependent wave packet by the superposition of time-dependent eigenstates of the
quantum harmonic oscillator? The positive answer was found by Schrödinger in
1926.39 For each complex number α = |α|eiδ, we define the coherent state

ψα(x, t) := e−|α|2/2
∞
X

n=0

e−iEnt/�ϕn(x)
αn

√
n!

, x, t ∈ R

where the pair ϕn, En = �ω(n + 1
2
) is the nth eigensolution of the Hamiltonian for

the quantum harmonic oscillator. For each α ∈ C, the function ψα possesses the
following properties:

(i) Schrödinger equation: ψα is a solution of the time-dependent Schrödinger equa-
tion for the harmonic oscillator.

(ii) Normalization: x �→ ψα(x, t) is a normalized state in the Hilbert space L2(R)
for each time t ∈ R.

(iii) Mean position: x̄(t) = 〈ψα(t)|Qψα〉 =
√

2 x0|α| cos(ωt− δ) for all times t ∈ R.

Recall that x0 :=
p

�/mω.
(iv) Probability density: For all x, t ∈ R,

|ψα(x, t)|2 =
1

σ
√

2π
e−(x−x̄(t))2/2σ2

.

This is a Gaussian distribution where the mean value x̄(t) oscillates with the
angular frequency ω, and the time-independent mean fluctuation is given by
σ = x0/

√
2.

(v) Eigenvectors of the annihilation operator: aψα(x, 0) = αψα(x, 0) for all x ∈ R.

Let us prove this. Explicitly, for all x, t ∈ R,

ψα(x, t) =
1

p

x02n
√

π
e−|α|2/2 e−x2/2x2

0 e−iωt/2
∞
X

n=0

αne−inωt

n!
Hn

„

x

x0

«

.

The generating function for the Hermite polynomials reads as

39 E. Schrödinger, The continuous passage from micromechanics to macrome-
chanics, Naturwissenschaften 44 (1926), 664–666 (in German).
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Ae−ξ2+2ξη = A

∞
X

n=0

ξn

n!
Hn(η).

Choosing the quantities

ξ :=
αe−iωt

√
2

, η :=
x

x0
, A :=

1
p

x0
√

π
e−|α|2/2 e−x2/2x2

0 e−iωt/2,

we get ψα(x, t) = Ae−ξ2+2ξη. The claims follow now easily by using standard cal-
culus formulas along with eiz = cos z + i sin z. For (v), note that aϕ0 = 0 and
aϕn =

√
n ϕn−1 if n = 1, 2, ... �

In the 1960s, coherent states were used in laser optics for the representation of
coherent light waves. As a standard textbook on coherent states and laser optics,
we recommend the monograph by L. Mandel and E. Wolf, Optical Coherence and
Quantum Optics, Cambridge University Press, 1995.

7.5 Feynman’s Quantum Mechanics

It is a curious historical fact that quantum mechanics began with two
quite different mathematical formulations: the differential equation of
Schrödinger, and the matrix algebra of Heisenberg. The two, apparently
dissimilar approaches, were proved to be mathematically equivalent. These
two points of view were destined to complement one another and to be ul-
timately synthesized in Dirac’s transformation theory.

This paper will describe what is essentially a third formulation of non-
relativistic quantum theory. This formulation was suggested by some of
Dirac’s remarks concerning the relation of classical action to quantum
mechanics. A probability amplitude is associated with an entire motion of
a particle as a function of time, rather than simply with a position of the
particle at a particular time.

The formulation is mathematically equivalent to the more usual formula-
tions. There are, therefore, no fundamentally new results. However, there
is a pleasure in recognizing old things from a new point of view. Also, there
are problems for which the new point of view offers a distinct advantage.40

Richard Feynman, 1948

The calculations that I did for Hans Bethe, using the Schrödinger equa-
tion, took me several months of work and several hundred sheets of paper.
Dick Feynman (1918–1988) could get the same answer, calculating on a
blackboard, in half an hour.41

Freeman Dyson, 1979

Convention. Let z be a nonzero complex number with

z = |z|eiϕ, −π < ϕ < π,

that is, we exclude the non-positive real values, z ≤ 0. In the following sections,
√

z
denotes the principal value of the square root defined by

40 R. Feynman, Space-time approach to nonrelativistic quantum mechanics, Phys.
Rev. 20 (1948), 367–387.

41 F. Dyson, Disturbing the Universe, Harper & Row, New York, 1979.
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√
z :=

p

|z| eiϕ/2. (7.59)

For example,
√

i = eiπ/4. If we use the principal values, then the function

z �→
√

z (7.60)

is holomorphic on the set C\] − ∞, 0] (the complex plane cut along the negative
real axis). Thus, analytic continuation of the function f(x) :=

√
x, x > 0 yields the

function (7.60). This fact will be frequently used in what follows. The idea is to
pass from time t to imaginary time it and to use analytic continuation in order to
translate well-known results from diffusion processes to quantum processes. This is
called the Euclidean strategy in quantum physics. The following golden rule holds:

Apply analytic continuation only to such quantities that you can measure
in physical experiments.

Analytic continuation of functions depending on energy plays a crucial role in study-
ing the following subjects:

• scattering processes,
• the energies energies of bound states, and
• the energies of unstable particles having finite lifetime (called resonances).

For this, we refer to Sect. 8.3.5 on page 713. In terms of the double-sheeted Riemann
surface R of the multi-valued square-root function (used by physicists in quantum
physics), the principal value of

√
z in the open upper (resp. lower) half-plane cor-

responds to the first (resp. second sheet) of R (see Fig. 8.6 on page 714).
Similarly, as for the square root, the value ln z := ln |z|+iϕ is called the principal

value of the logarithm, where the argument ϕ of the square root is uniquely defined
as above by the condition −π < ϕ < π. The function z �→ ln z is holomorphic on
C\] −∞, 0].

7.5.1 Main Ideas

The basic idea of Feynman’s approach to quantum mechanics is

• to describe the time-evolution of a quantum system by an integral formula, which
is equivalent to the Schrödinger differential equation,

• and to represent the kernel K(x, t; y, t0) of the integral formula by a path integral.

From the physical point of view, Feynman emphasized that

The description of quantum particles becomes easier if we use probability
amplitudes as basic quantities, but not transition probabilities.

The reason is that, in contrast to transition probabilities, probability amplitudes
satisfy a simple composition rule (also called product rule) which is at the heart
of Feynman’s approach to quantum theory. In terms of finite-dimensional Hilbert
spaces, the following hold:

• Feynman’s probability amplitudes are precisely the complex-valued Fourier co-
efficients c1, c2, . . . , cn of a state vector.

• Feynman’s composition rule for probability amplitudes coincides with the Par-
seval equation (7.81) for Fourier coefficients in mathematics.42

42 Parseval des Chénes (1755–1836), Fourier (1768–1830), Dirac (1902–1984), von
Neumann (1903–1957), Laurent Schwartz (1915–2004), Feynman (1918–1988),
Gelfand (born 1913).
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• The transition probabilities correspond to the quadratic quantities

|c1|2, |c2|2, . . . , |cn|2,

which do not linearly depend on the corresponding state vector, in contrast to
the Fourier coefficients c1, c2, . . . , cn.

In infinite-dimensional Hilbert spaces, one has to replace Fourier series by Fourier
integrals and their generalizations (e.g., Fourier–Stieltjes integrals). In physics, this
corresponds to the formal Dirac calculus. In terms of mathematics, one has to
use von Neumann’s spectral theory for self-adjoint operators and the more general
Gelfand theory of generalized eigenfunctions based on Laurent Schwartz’s language
of distributions (generalized functions).

Feynman’s integral formula. According to Schrödinger, the motion of a
quantum particle of mass m > 0 on the real line is described by the differential
equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + U(x)ψ(x, t), ψ(x, t0) = ψ0(x), (7.61)

for all positions x ∈ R and all times t > t0. Feynman used the fact that the solution
of this initial-value problem can be represented by the integral formula

ψ(x, t) =

Z

R

K(x, t; x0, t0)ψ0(x0)dx0, x ∈ R, t > t0. (7.62)

The main task is to compute the kernel K, which is called the (retarded) Feynman
propagator kernel. There exist two different methods.43

(i) The Fourier method: Following Fourier’s approach to the heat conduction equa-
tion, one can use eigenfunction expansions (e.g., Fourier series or Fourier inte-
grals) in order to get the kernel K. For the heat kernel, we will discuss this in
(7.77) below.44

(ii) The path integral method: In his 1942 Princeton dissertation, Feynman (1918–
1988) invented the path integral representation

K(x, t; x0, t0) =

Z

C{t0,t}
eiS[q]/� Dq. (7.63)

Here, we sum over all possible classical paths q : [t0, t] → R on the real line
with fixed endpoints: q(t0) = x0 and q(t) = x. The symbol S[q] denotes the
classical action of the path q = q(τ), t0 < τ < t.

According to Feynman, the passage from classical mechanics to quan-
tum mechanics corresponds to a statistics over all possible classical
paths where the statistical weight eiS[q]/� depends on the classical ac-
tion.

43 In terms of finite-dimensional Hilbert spaces, the two methods are thoroughly
investigated in Volume I. For the Fourier method (resp. the Feynman path inte-
gral method), see formula (7.82) on page 421 of Vol. I (resp. formula (7.78) on
page 417 of Vol. I).

44 J. Fourier, La théorie de la chaleur (heat theory), Paris, 1822. Interestingly
enough, Fourier (1768–1830) was obsessed with heat, keeping his rooms ex-
tremely hot.



482 7. Quantization of the Harmonic Oscillator

This is a highly intuitive interpretation of the quantization of classical pro-
cesses. Let us discuss the intuitive background.

Causality and the product rule for the Feynman propagator. The Feyn-
man propagator kernel satisfies the following product rule:

K(x, t; x0, t0) =

Z

R

K(x, t; y, τ)K(y, τ ; x0, t0) dy, t > τ > t0. (7.64)

It follows from (7.62) that this relation reflects causality. To explain this, choose
t0 < τ < t. We start with a wave function ψ = ψ(x0, t0) at the initial time t0. For
the wave function at the intermediate time τ and at the final time t, we get

ψ(y, τ) =

Z

R

K(y, τ ; x0, t0)ψ(x0, t0)dx0 (7.65)

and

ψ(x, t) =

Z

R

K(x, t; y, τ)ψ(y, τ)dy, (7.66)

respectively. By causality, we expect that ψ(x, t) at the final time t can also be
generated by the wave function at the initial time t0, that is,

ψ(x, t) =

Z

R

K(x, t; x0, t0)ψ(x0, t0)dx0. (7.67)

Now the product formula (7.64) tells us that indeed the composition of the two
formulas (7.65) and (7.66) yields (7.67).

The infinitesimal Feynman propagator kernel. In order to obtain his
path integral, Feynman used the causality condition (7.64) and the following magic
approximation formula:

K(x + Δx, t + Δt; x, t) = eiΔS/� · Kfluct(t + Δt; t). (7.68)

This is an approximation formula for small position differences Δx and small time
differences Δt. Explicitly, we use

• the classical action difference

ΔS :=

„

m

2

“Δx

Δt

”2

− U(x)

«

Δt

with the discrete velocity Δx
Δt

and the discrete energy ΔE := ΔS/Δt, and
• the infinitesimal quantum fluctuation term

Kfluct(t + Δt; t) :=

r

m

2π�iΔt
.

Here, ΔS is an approximation of the classical action

S[q] :=

Z t+Δt

t

nm

2
q̇(τ)2 − U(q(τ))

o

dτ

for a classical trajectory q = q(τ) which connects the two points x and x+Δx, that
is, q(t) = x and q(t + Δt) = x + Δx. Here, the symbol m denotes the mass of the
particle on the real line. The magic formula (7.68) tells us that
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The passage from classical mechanics to quantum mechanics is obtained
by adding quantum fluctuations.

The magic formula (7.68) combines the infinitesimal strategy due to Newton (1643–
1727) and Leibniz (1646–1616) with the principle of least action due to Leibniz,
Maupertuis (1698–1759) and Euler (1707–1783). Introducing the (complex) char-
acteristic length45

l :=
1

Kfluct(t + Δt; t)
=

r

2π�iΔt

m
,

the magic Feynman formula (7.68) reads as

K(x + Δx, t + Δt; x, t) =
eiΔS/�

l
.

This reflects the fact that the Feynman propagator kernel K has the physical di-
mension (length)−1 for the motion of a quantum particle on the real line.

The global Feynman propagator kernel. Combining the causality princi-
ple (7.64) with the magic formula (7.68) for the infinitesimal propagator kernel,
Feynman arrived at the following global kernel formula:

K(x, t; x0, t0) = lim
N→∞

1

l

Z

RN−1
ei
P

ΔS/� dq1

l
· · · dqN−1

l
(7.69)

with the discretized action

X

ΔS :=

N−1
X

n=0

j

m

2

“qn+1 − qn

Δt

”2

− U(qn)

ff

Δt.

Here, we add the boundary conditions: q0 := x0 and qN := x. The crucial Feynman
formula (7.69) tells us that the global Feynman propagator kernel K(x, t; x0, t0)
is obtained by summing over all possible time-ordered products of infinitesimal
Feynman propagator kernels. This is a special case of the following general principle
in natural philosophy:

In nature, interactions are obtained by the superposition of all possible
infinitesimal interactions taking causality into account.

Introducing the path-integral notation, we briefly write

Z

C{t0,t}
eiS[q]/�Dq := lim

N→∞

1

l

Z

RN−1
ei
P

ΔS/� dq1

l
· · · dqN−1

l
. (7.70)

Physicists use the following two methods for computing path integrals:

(i) the limit formula (7.70) and
(ii) infinite-dimensional Gaussian integrals.

Method (i) corresponds to an approximation of continuous paths by polygons.
Method (ii) generalizes the finite-dimensional formula

Z

RN

e−
1
2 〈x|Ax〉 e〈b|x〉

dx1√
2π

. . .
dxN√

2π
=

e〈b|A
−1b〉

√
det A

45 The square root is to be understood as principal value: l = eiπ/4
q

2π�Δt
m

.
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to infinite dimensions. In this context, one has to define the determinant det A of
an infinite-dimensional operator A by generalizing the finite-dimensional formula

det A =

N
Y

n=1

λn

for the eigenvalues λ1, . . . , λN of the operator A. Here, we will use the analytic con-
tinuation of the Riemann zeta function and its generalization to elliptic differential
operators on Riemannian manifolds (see Sect. 7.9). Summarizing, we will get the
following key formula:

K(x, t; x0, t0) =

Z

C{t0,t}
eiS[q]/�Dq = N

Z

C{t0,t}
eiS[q]/� DGq (7.71)

which is basic for modern physics. This formuula tells us that the Feynman path
integral differs from the normalized infinite-dimensional Gaussian integral by a
normalization factor N . Fortunately enough, the explicit knowledge of the normal-
ization factor N is not necessary in many applications to quantum field theory. In
terms of mathematics, formula (7.71) connects different subjects of mathematics
with each other: spectral theory of elliptic differential operators on Riemannian
manifolds, harmonic analysis, analytic number theory, distributions and pseudo-
differential operators, Fourier integral operators, random walks and stochastic pro-
cesses (Brownian motion), topological quantum field theory (topological invariants
of knots, manifolds and algebraic varieties). This concerns the following mathemati-
cal branches: analysis, differential geometry, algebraic topology, algebraic geometry,
and theory of probability.

The innocently looking formula (7.71) emphasizes the unity of mathemat-
ics.

The WKB (Wentzel, Kramers, Brioullin) method. The passage from
Maxwell’s wave optics to geometric optics corresponds to the limit λ → 0 (i.e.,
the wavelength λ goes to zero). Similarly, the passage from quantum mechanics to
classical mechanics corresponds to the limit

� → 0

called the classical limit. More precisely, this means that quantum effects occur
if the quotient �/Sdaily is sufficiently small. Here, Sdaily is the action of processes
in daily life. Explicitly, � ∼ 10−34Js and Sdaily ∼ 1Js. Shortly after Schrödinger’s
publication of his wave mechanics in 1926, Wentzel, Kramers, and Brioullin inde-
pendently investigated the limit � → 0 parallel to geometric optics.46 In terms of
the Feynman path integral, the refined WKB method yields the following elegant
key formula

K(x, t; x0, t0) = eiS[qclass]/� Kfluct(x, t; x0, t0) (7.72)

46 G. Wentzel, A generalization of the quantum condition in wave mechanics, Z.
Physik 38 (1926), 518–529 (in German).
H. Kramers, Wave mechanics and half-integer quantization, Z. Physik 39 (1927),
828–840 (in German).
M. Brioullin, La méchanique ondulatoire de Schrödinger; une méthode générale
de résolution par approximations successives, Comptes Rendus Acad. Sci. (Paris)
183 (1926), 24–44 (in French).



7.5 Feynman’s Quantum Mechanics 485

where S[qclass] is the action along the classical path with the boundary condition
qclass(t0) = x0 and qclass(t) = x. The factor Kfluct describes quantum fluctuations
(see Sect. 7.10 on page 580).

Diffusion processes and the Euclidean strategy in quantum mechan-
ics. The diffusion equation

∂ψ(x, t)

∂t
= κψxx − V (x), ψ(x, t0) = ψ0(x) (7.73)

for all x ∈ R and all t > t0 describes the diffusion of particles on the real line, where
ψ(x, t) denotes the particle density at the position x at time t, and κ > 0 is the
diffusion constant. Using the replacement

t ⇒ it, (7.74)

and setting κ := �/2m, U(x) := −�V (x), the diffusion equation (7.73) passes over
to the Schrödinger equation (7.61).47 We expect that, by the replacement (7.74),
each result on the classical diffusion equation (7.73) generates a result in quantum
mechanics. This is called the Euclidean strategy. For example, let V (x) ≡ 0. We
will show below that the classical diffusion kernel

P(x, t; x0, t0) =

r

m

2π�(t − t0)
· e−m(x−x0)2/2�(t−t0) (7.75)

passes over to the Feynman propagator kernel K(x, t; x0, t0) := P(x, it; x0, it0). Ex-
plicitly,

K(x, t; x0, t0) =

r

m

2πi�(t − t0)
· eim(x−x0)2/2�(t−t0) (7.76)

for all positions x, x0 ∈ R and all times t > t0.
Brownian motion. In 1905 Einstein studied the Brownian motion of tiny par-

ticles suspended in a liquid. This was the beginning of the theory of stochastic
processes, which was developed as a mathematical theory by Wiener and Kol-
mogorov in the early 1920s and in the early 1930s, respectively.48 Comparing the
Schrödinger equation (7.61) with the diffusion equation (7.73), we arrive at the
following intuitive interpretation of quantum mechanics emphasized by Feynman:

The motion of a quantum particle on the real line can be regarded as Brow-
nian motion (i.e., a random walk) in imaginary time.

This formal analogy motivated Mark Kac in 1949 to prove the famous Feynman–
Kac formula49 which represents the diffusion kernel (7.75) as a path integral, in
rigorous mathematical terms see Sect. 7.11.5 on page 588.

Historical remarks on Feynman’s discovery. The following quotation is
taken from the comprehensive handbook on Feynman path integrals in quantum
mechanics written by Christian Grosche and Frank Steiner:50

47 Alternatively, if we regard ψ(x, t) as the temperature at the point x at time t,
then the equation (7.73) describes the heat conduction on the real line.

48 Robert Brown (1773–1858), Einstein (1879–1955), Schrödinger (1887–1961),
Wiener (1894–1964), Kolmogorov (1903–1987), Mark Kac (1914–1984), Feyn-
man (1918–1988).

49 M. Kac, On distributions of certain Wiener functionals, Trans. Amer. Math. Soc.
65 (1949), 1–13.

50 C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
Berlin, 1998 (reprinted with permission).
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Feynman was working as a research assistant at Princeton during 1940–41.
In the course of his graduate studies he discovered with Wheeler an action
principle using half advanced and half retarded potentials.51 The problem
was the infinite self-energy of the electron, and it turned out that the new
“action principle” could deal successfully with the infinity arising in the
application of classical electrodynamics.
The problem then became one of applying this action principle to quantum
mechanics in such a way that classical mechanics could arise naturally as
a special case of quantum mechanics when the Planck quantum of action
h was allowed to go to zero.
Feynman searched for any ideas which might have been previously worked
out in connecting quantum-mechanical behavior with such classical ideas
as the Lagrangian and Hamilton’s action integral . . . At a Princeton beer
party Richard Feynman learned from Herbert Jehle, a former student of
Schrödinger in Berlin, who had newly arrived from Europe, of Dirac’s
paper.52 Dirac showed that

〈q(t)|q(t0)〉 corresponds to e
i
�

R t
t0

Ldt
,

where L is the Lagrangian. The natural question that then arose was what
Dirac had meant by the phrase “corresponds to.” Feynman found that
Dirac’s statement actually means “proportionally to”, that is,

K(x + Δx, t + Δt; x, t) = const(Δt) · eiΔS/� .

Based on this result and the causality composition law (7.64) in the limit
N → ∞, Feynman interpreted the multiple-integral construction (7.70)
as an “integral over all paths” and wrote this down in his Ph. D. thesis
presented to the Faculty of Princeton University on May 4, 1942.53 During
the war Feynman worked at Los Alamos (New Mexico), and after the war
his primary direction of work was towards quantum electrodynamics. So it
happened that a complete theory of the path integral approach to quantum
mechanics was worked out only in 1947. Feynman submitted his paper to
the Physical Review, but the editors rejected it! Thus he rewrote it and
sent it to Reviews of Modern Physics, where it finally appeared in spring
1948 under the title “Space-time approach to non-relativistic quantum
mechanics.”54 Feynman’s paper is one of the most beautiful and most
influential papers in physics written during the last fifty years.55

51 J. Wheeler and R. Feynman, Interaction with the absorber as the mechanism of
radiation, Rev. Mod. Phys. 17 (1945), 157–181.

52 P. Dirac, The Lagrangian in quantum mechanics, Soviet Union Journal of Physics
(in German). Reprinted in J. Schwinger (Ed.) (1958), pp. 312–320.

53 R. Feynman, The principle of least action in quantum mechanics, Ph.D. thesis,
Princeton, New Jersey, 1942.

54 Rev. Mod. Phys. 20 (1948), 367–387.
55 Feynman’s approach to quantum mechanics has a forerunner. In 1924 Wentzel

published a paper where one can find the basic formulae and their interpretation
as they were adopted twenty years later by Feynman. In fact, Wentzel’s paper was
published before the fundamental papers by Heisenberg (1925) and Schrödinger
(1926). See G. Wentzel, Zur Quantenoptik (On quantum optics), Z. Physik 22
(1924), 193–199. This is discussed in: S. Antoci and D. Liebscher, The third
way to quantum mechanics is the forgotten first, Annales de Fondation Louis de
Broglie 21 (1996), 349–368 (see also S. Antoci and D. Liebscher, Wentzel’s path
integrals, Int. J. Math. Phys. 37 (1998), 531–535).
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7.5.2 The Diffusion Kernel and the Euclidean Strategy in
Quantum Physics

Formal motivation of the diffusion kernel. In order to discuss the basic idea
of the Euclidean strategy in quantum mechanics, let us start with considering the
classical diffusion equation

ψt(x, t) = κψxx(x, t), x ∈ R, t > t0, ψ(x, t0) = ψ(x) (7.77)

where κ := �/2m. We want to obtain the kernel P from (7.75), by using the Fourier
method in a formal way. We start with the following two conditions

(C1) Pt(x, t) = κPxx(x, t), x ∈ R, t > 0, and
(C2) limt→+0 P (x, t) = δ(x), x ∈ R.

Taking the existence of P for granted, set P(x, t; x0, t0) := P (x − x0; t − t0). We
want to show that the function

ψ(x, t) :=

Z

R

P(x, t; x0, t0)ψ0(x0)dx0, x ∈ R, t > t0

is a solution of (7.77). In fact, it follows from (C1) that

ψt(x, t) − κψxx(x, t) =

Z

R

(Pt − Pxx)ψ0(x0)dx0 = 0, x ∈ R, t > 0.

By (C2), limt→t0+0 ψ(x, t) =
R

R
limt→t0+0 P(x, t; x0, t0)ψ0(x0)dx0, and hence

lim
t→t0+0

ψ(x, t) =

Z

R

δ(x − x0)ψ0(x0)dx0 = ψ0(x).

It remains to determine the function P. Let p �→ P̂ (p, t) be the Fourier transform
of x �→ P (x, t). By (C1) and (C2),

P̂t(p, t) = −κp2P̂ (p, t), t > 0, P̂ (p, 0) =
1√
2π

.

Hence P̂ (p, t) = 1√
2π

e−κp2t. By Fourier transform,

P (x, t) =
1

2π

Z

R

eipx e−κp2t dp, x ∈ R, t > 0.

Hence P (x, t) = 1√
4πκt

e−x2/4κt (see the Gaussian integral (7.182) on page 560).

This finishes the classical motivation for the diffusion kernel (7.75).
The classical existence theorem for the diffusion equation. The proof

of the following standard result in the theory of partial differential equations can
be found in H. Triebel, Higher Analysis, Sect. 42, Barth, Leipzig, 1989.

Theorem 7.15 We are given the initial function ψ0 ∈ D(R). Choose the kernel P
as in (7.75). Then the function

ψ(x, t) :=

Z

R

P(x, t; x0, t0)ψ0(x0) dx0, x ∈ R, t > t0 (7.78)

is a classical solution of the diffusion equation (7.77). In addition, we have the
initial condition limt→t0+0 ψ(x, t) = ψ0(x) for all x ∈ R.
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The classical existence theorem for the free quantum particle on the
real line. Consider the Schrödinger equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t), x ∈ R, t > t0, ψ(x, t0) = ψ0(x) (7.79)

for the motion of a free quantum particle of mass m on the real line. Let D denote

the set of all Gaussian functions e−β(x−α)2 , x ∈ R with real parameter α and positive
parameter β. The complex linear hull, span D, is a dense subset of the Hilbert space
L2(R).

Theorem 7.16 We are given the initial function ψ0 ∈ span D. Choose the kernel
K as in (7.75). Then the function

ψ(x, t) :=

Z

R

K(x, t; x0, t0)ψ0(x0) dx0, x ∈ R, t > t0 (7.80)

is a classical solution of the Schrödinger equation (7.79). In addition, we have the
initial condition limt→t0+0 ψ(x, t) = ψ0(x), in the sense of the convergence on the
Hilbert space L2(R).

The proof can be found in Zeidler (1995a), Sect. 5.22.2 (see the references on page
1049).

Formal perspectives. In the next sections, we will study the following topics
in a formal manner:

• Propagator theory via the formal Dirac calculus (Sect. 7.5.3).
• Formal motivation of the definition of the Feynman path integral (Sect. 7.7.6).

Rigorous perspectives. Furthermore, we will rigorously investigate the fol-
lowing mathematical topics:

• Von Neumann’s operator calculus and the functional-analytic approach to both
the Feynman propagator and the Euclidean Feynman propagator (Sect. 7.6.3).

• Functional-analytic theory of the motion of a free quantum particle on the real
line (Sect. 7.6.4).

• Functional-analytic theory of the motion of a harmonic oscillator on the real line
and the Maslov index (Sect. 7.6.7).

• The Euclidean Feynman propagator and von Neumann’s density matrix in quan-
tum statistics (Sect. 7.6.8).

• Computation of the Feynman path integral for both the free quantum particle
and the quantized harmonic oscillator (Sects. 7.7.3 and 7.7.4).

• The relation between infinite-dimensional Gaussian integrals and the Feynman
propagator kernel including applications to the free quantum particle and the
quantized harmonic oscillator (Sect. 7.9).

• The semi-classical WKB method (Sect. 7.10).
• Brownian motion, the Wiener integral, and the Feynman–Kac formula for diffu-

sion processes (Sect. 7.11).

7.5.3 Probability Amplitudes and the Formal Propagator Theory

Feynman’s approach to quantum theory can be understood best by using
Dirac’s formal calculus; this can be generalized straightforward to quantum
field theory.

Folklore
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The Parseval equation. Let ϕ1, . . . , ϕN be an orthonormal basis of the complex
N -dimensional Hilbert space Y . This means that the orthonormality condition

〈ϕk|ϕl〉 = δkl, k, l = 1, . . . , N

is satisfied. The basis property tells us that, for all ϕ, ψ ∈ Y, we have

(F) the Fourier expansion |ψ〉 =
PN

k=1 |ϕk〉〈ϕk|ψ〉,
(C) the completeness relation I =

PN
k=1 |ϕk〉〈ϕk|, and56

(P) the Parseval equation

〈ψ|ϕ〉 =

n
X

k=1

〈ψ|ϕk〉〈ϕk|ϕ〉. (7.81)

These classical properties of Fourier expansions are discussed in Sect. 7.10 of Vol.
I. The complex numbers c1 := 〈ψ|ϕ1〉, . . . , cN := 〈ψ|ϕN 〉 are called the Fourier
coefficients. Suppose that ||ψ|| = 1. By the Parseval equation,

||ψ||2 =

N
X

k=1

|ck|2 = 1.

If ψ is the state of a quantum particle, then |ck|2 is the probability for observing the
particle in the state ϕk; the Fourier coefficients c1, . . . , cN are called the probability
amplitudes of the particle state ψ.

The Schrödinger equation. Consider again the Schrödinger equation

i�ψt = − �
2

2m

∂2ψ

∂x2
+ Uψ (7.82)

for the motion of a quantum particle on the real line. Here, m > 0 is the mass of the
particle. We assume that the smooth potential function U : R → R has compact
support, that is, U ∈ D(R). In terms of physics, the potential U describes the force
acting on the quantum particle. If U ≡ 0, then the quantum particle is called free.
Set

H0ϕ := − �
2

2m

∂2ϕ

∂x2
+ Uϕ for all ϕ ∈ S(R).

Then the operator H0 : D(R) → L2(R) is essentially self-adjoint on the Hilbert
space L2(R). Let H : W 2

2 (R) → L2(R) be the self-adjoint extension of H0. Then
the Schrödinger equation reads as

i�ψ̇(t) = Hψ(t), t > t0, ψ(t0) = ψ0

with the unique solution ψ(t) = e−iH(t−t0)/�ψ0 (see Theorem 7.25 on page 507).
The formal Dirac calculus. It is our goal to study the Schrödinger equation

(7.82) by means of the formal Dirac calculus on the real line.57 In particular, we
will use

• the orthonormality condition 〈x|x0〉 = δ(x − x0) for all x, x0 ∈ R, and

56 In mathematics, one also writes ψ =
PN

k=1〈ϕk|ψ〉ϕk and I =
PN

k=1 ϕk ⊗ ϕk.
57 This formal calculus is thoroughly discussed in Sect. 11.2.5 of Vol. I. The rigorous

justification of the Dirac calculus can be found in Sect. 12.2 of Vol. I.
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• the completeness relation

I =

Z

R

|x〉〈x| dx, (7.83)

where I denotes the unit operator. Using the trivial identity 〈ψ|ϕ〉 = 〈ψ|Iϕ〉 and
the completeness relation (7.83), we formally get the Parseval equation

〈ψ|ϕ〉 =

Z

R

〈ψ|x〉〈x|ϕ〉dx. (7.84)

This elegant formal argument is called Dirac’s substitution trick.58

Formal operator kernel. The operator equation ϕ = Aψ is equivalent to the
integral relation

〈x|ϕ〉 =

Z

R

〈x|A|x0〉〈x0|ψ〉 dx0, x ∈ R,

by using the completeness relation. Setting A(x, x0) := 〈x|A|x0〉 for all positions
x, x0 ∈ R, we get

ϕ(x) =

Z

R

A(x, x0)ψ(x0)dx0, x, x0 ∈ R.

The function (x, x0) �→ A(x, x0) is called the kernel of the operator A. In rigorous
terms, this is not always a classical function. For example, the identical operator
A = I has the kernel

A(x, x0) = 〈x|x0〉 = δ(x − x0).

If we choose the Hamiltonian H, then the stationary Schrödinger equation

− �
2

2m
ψ′′(x) + U(x)ψ(x) = ϕ(x), x ∈ R (7.85)

means that ϕ = Hψ. Formally, this is equivalent to the integral relation

〈x|ϕ〉 =

Z

R

〈x|H|x0〉〈x0|ψ〉dx0, x ∈ R, (7.86)

by using the completeness relation (7.83). Now we want to study the kernels K
and G to the Feynman propagator e−i(t−t0)H/� and the negative resolvent operator
(H − EI)−1, respectively. Here, K and G is called the Feynman propagator kernel
and the energetic Green’s function, respectively.

In terms of modern mathematics, the Dirac calculus is a forerunner of
the theory of pseudo-differential operators, where differential operators and
integral operators are treated on equal footing.

58 Writing 〈x|ϕ〉 = ϕ(x) and 〈ψ|x〉 = 〈x|ψ〉† = ψ(x)†, equation (7.84) reads as

〈ψ|ϕ〉 =

Z

R

ψ(x)†ϕ(x)dx.

This is the inner product on the Hilbert space L2(R).
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We refer to the treatise by L. Hörmander, The Analysis of Linear Partial Differential
Operators, Vols. 1–4, Springer, New York, 1983.

The key formulas. The Feynman approach to quantum physics is based on
the following formal arguments.

(i) The Feynman propagator kernel K: For all positions x, x0 ∈ R and all times
t > t0, we define the Feynman propagator kernel

K(x, t; x0, t0) := 〈x|e−iH(t−t0)/� |x0〉. (7.87)

• Integral representation for the dynamics of the quantum particle: For the
solution ψ(t) = e−iH(t−t0)/�ψ0 of the Schrödinger equation (7.82), we have

ψ(x, t) =

Z

R

K(x, t; x0, t0)ψ(x0, t0)dx0, x ∈ R, t > t0. (7.88)

• Schrödinger equation for the Feynman propagator kernel: For all positions
x, x0 ∈ R and all times t > t0,

i�Kt(x, t; x0, t0) = − �
2

2m
Kxx(x, t; x0, t0) + U(x)K(x, t; x0, t0).

• Singularity at the initial time t0 :

lim
t→t0+0

K(x, t; x0, t0) = δ(x − x0), x, x0 ∈ R. (7.89)

• Causality relation: For all positions x, x0 ∈ R and all times t > τ > t0,

K(x, t; x0, t0) =

Z

R

K(x, t; y, τ)K(y, τ ; x0, t0) dy. (7.90)

This is the product rule for the Feynman propagator kernel.

Formal proof. By the completeness relation
R

R
|x0〉〈x0| dx0 = I,

〈x|ψ〉 = 〈x|e−iH(t−t0)/� |ψ0〉 =

Z

R

〈x|e−iH(t−t0)/� |x0〉〈x0|ψ0〉dx0.

This is (7.88). The differential equation for K follows from the fact that the
two expressions

i�ψt(x, t) =

Z

R

i�Kt(x, t; x0, t0)ψ0(x0) dx0,

Hψ(x, t) =

Z

R

HK(x, t; x0, t0)ψ0(x0) dx0

are equal to each other for all initial functions ψ0. Hence i�Kt = HK. Fur-
thermore,

lim
t→t0+0

〈x|e−iH(t−t0)|x0〉 = 〈x|x0〉 = δ(x − x0).

From the group property eu+v = euev, u, v ∈ C of the exponential function,
we get
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e−iH(t−t0)/� = e−iH(t−τ)�e−iH(τ−t0)/� , t0 < τ < t.

This implies

〈x|e−iH(t−t0)/� |x0〉 =

Z

R

〈x|e−iH(t−τ)/� |y〉〈y|e−iH(τ−t0)/� |x0〉 dy, (7.91)

which is the causality relation (7.90). �

(ii) The resolvent kernel R: Let �(H) be the resolvent set of the Hamiltonian H
on the Hilbert space L2(R). By definition, the complex number E is contained
in �(H) iff the inverse operator

(EI − H)−1 : L2(R) → L2(R)

exists, and it is continuous. This operator is called the resolvent59 of the Hamil-
tonian H at the point E . We briefly write RE := (EI −H)−1. The complement
σ(E) := C \ �(H) is called the spectrum of H.

The spectrum σ(H) is a closed subset of the real line; the complemen-
tary resolvent set �(H) is an open subset of the complex plane.

The points E in the spectrum σ(H) are the energy values of the quantum
particle described by the Hamiltonian H. For all positions x, x0 ∈ R and all
complex numbers E ∈ �(H), we define the resolvent kernel

R(x, x0; E) := 〈x|(EI − H)−1|x0〉.

This kernel has the following properties.
• Integral representation of the resolvent: For each given complex number

E ∈ �(H), the equation

(EI − H)ψ = χ

has the unique solution ψ = (EI −H)−1χ. This is equivalent to the integral
relation

ψ(x) =

Z

R

R(x, x0; E)χ(x0)dx0, x ∈ R. (7.92)

This follows from

〈x|ψ〉 = 〈x|(EI − H)−1ϕ〉 =

Z

R

〈x|(EI − H)−1|x0〉〈x0|ϕ〉 dx0.

• The resolvent equation: For all E , E ′ ∈ �(H), we have Hilbert’s resolvent
equation RE − RE′ = (E ′ − E)RE′RE . This implies

R(x, x0; E) −R(x, x0; E ′) = (E ′ − E)

Z

R

R(x, y; E ′)R(y, x0; E) dy.

In fact, Hilbert’s resolvent equation implies

〈x|REx0〉 − 〈x|RE′x0〉 = (E ′ − E)

Z

R

〈x|RE′y〉〈y|REx0〉 dy.

59 Physicists frequently use the negative resolvent operator −(EI − H)−1 which is
equal to (H − EI)−1.
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(iii) The energetic Green’s function G: For all positions x, x0 ∈ R and all complex
numbers E ∈ �(H), we define

G(x, x0; E) := −R(x, x0; E).

For each complex number E ∈ �(H), the inhomogeneous stationary equation
(H − EI)ψ = ϕ, that is,

− �
2

2m
ψ′′(x) + (U(x) − E)ψ(x) = ϕ(x), x ∈ R,

has the solution ψ = −(EI − H)−1ϕ. By (7.92),

ψ(x) =

Z

R

G(x, y; E)ϕ(y)dy, x ∈ R.

Choosing ϕ(x) := δ(x − x0), we obtain ψ(x) = G(x, x0; E). This implies that,
for all E ∈ �(H), we get

− �
2

2m
Gxx(x, x0; E) + (U(x) − E)G(x, x0; E) = δ(x − x0), x, x0 ∈ R.

Therefore, the function (x, x0) �→ G(x, x0; E) is called the energetic Green’s
function (or the energetic 2-point function ) with respect to the complex num-
ber E /∈ σ(H). Now let us show that the energetic Green’s function has sin-
gularities at the spectral points E ∈ σ(H), which correspond to the physical
energy values of the quantum particle described by the Hamiltonian H.

(iv) The energetic Fourier transform: Let {|Ek〉}k∈N be the complete orthonormal
system of (generalized) eigenstates of the Hamiltonian H with the index set
N . That is, we have
• the (generalized) eigenvalue equation H|Ek〉 = Ek|Ek〉,
• the completeness relation

R

N |Ek〉〈Ek| dμ(k) = I, and
• the orthonormality relation 〈Ek|El〉 = δμ(k − l) for all k, l ∈ N .
Here, μ is a measure on the set N . This measure is called the energy measure
of the Hamiltonian H. The Dirac delta function δμ with respect to the measure
μ has the characteristic property that60

Z

N
δμ(k − k0)f(k) dμ(k) = f(k0).

Thus, the Dirac delta function δμ generalizes the Kronecker symbol. Now let us
assign to each energy state |Ek〉 the so-called energy function χk(x) := 〈x|Ek〉
for all x ∈ R.
• The Fourier–Stieltjes transform:

ψ̂(k) =

Z

R

χk(x)†ψ(x)dx, k ∈ N . (7.93)

• The inverse Fourier–Stieltjes transform:

ψ(x) =

Z

N
χk(x)ψ̂(k)dμ(k), x ∈ R. (7.94)

60 Mnemonically, this follows from
R

N 〈Ek0 |Ek〉〈Ek|f〉dμ(k) = 〈Ek0 |f〉, by using the
completeness relation.
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• The stationary Schrödinger equation: For all indices k ∈ N ,

− �
2

2m
χ′′

k(x) + U(x)χk(x) = Ekχk(x), x ∈ R. (7.95)

This tells us that the function χk is an eigenfunction corresponding to the
energy eigenvalue Ek.

• The function ψk(x, t) := e−iEkt/�χk(x) satisfies the instationary Schrödinger
equation:

i�
∂ψk(x, t)

∂t
= − �

2

2m

∂2ψk(x, t)

∂x2
+ U(x)ψk(x, t) = Ekψ(x, t), x, t ∈ R.

Formal proof. Ad (7.93). By the completeness relation,

〈Ek|ψ〉 =

Z

R

〈Ek|x〉〈x|ψ〉 dx.

Ad (7.94). Similarly, 〈x|ψ〉 =
R

N 〈x|Ek〉〈Ek|ψ〉dμ(k).
Ad (7.95). From H|Ek〉 = Ek|Ek〉, we get

〈x|Ek〉 = 〈x|H|Ek〉 =

Z

R

〈x|H|x0〉〈x0|Ek〉dx0.

Now use the formal equivalence between (7.85) and (7.86). �

(v) The energetic representation of the Feynman propagator kernel: For all posi-
tions x, x0 ∈ R and all times t > t0, we have

K(x, t; x0, t0) =

Z

N
e−iEk(t−t0)/�χk(x)χk(x0)

†dμ(k) (7.96)

and

G(x, x0; E + iε) =

Z

N

χk(x)χk(x0)
†

Ek − E − iε
dμ(k). (7.97)

Formal proof. Ad (7.96). To simplify notation, we set � := 1 and t0 := 0. By
the completeness relation,

〈x|e−itH |x0〉 =

Z

N
〈x|Ek〉〈Ek|e−itH |x0〉dμ(k).

Moreover, e−itH |Ek〉 = e−itEk |Ek〉. Hence

〈Ek|e−itH |x0〉 = 〈x0|eitH |Ek〉† = e−itEkt〈x0|Ek〉† = e−itEktχk(x0)
†.

Ad (7.97). Replace e−itH by (H − (E + iε)I)−1. �

(vi) The passage from time to energy: For all positions x, x0 ∈ R, all times t > t0,
all energies E ∈ R, and all energy damping parameters ε > 0, the following
transformation formulas are valid.
• The Fourier–Laplace transform of the Feynman propagator kernel:

G(x, x0; E + iε) =
i

�

Z ∞

t0

ei(E+iε)(t−t0)/� K(x, t; x0, t0)dt.
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• The Fourier–Laplace transform of the energetic Green’s function:

K(x, t; x0, t0) =
1

2πi
· PV

Z ∞

−∞
e−i(E+iε)(t−t0)/� G(x, x0; E + iε) dE.

Recall that the symbol PV
R∞
−∞ . . . stands for the limit limR→+∞

R R

−R
. . . (principal

value of the integral).
Formal proof. This follows immediately from (7.96) and (7.97) combined with

the two classical formulas

i

�

Z ∞

−∞
ei(E+iε)(t−t0)/�e−iEk(t−t0)/�θ(t − t0)dt =

1

Ek − E − iε

and

θ(t − t0)e
−iEk(t−t0)/� =

1

2πi
· PV

Z ∞

−∞

e−i(E+iε)(t−t0)/�

Ek − E − iε
dE,

which are valid for the following quantities: all energies E, Ek ∈ R, all times t, t0 ∈ R

with t �= t0, and all damping parameters ε > 0. The proof of the latter two formulas
can be found in Problem 7.35. �

The preceding formal propagator theory is very convenient from the mnemonical
point of view. Our next goal is to show how this formal approach can be translated
into a rigorous approach. To this end, we will use

• the von Neumann operator calculus in Hilbert spaces,
• tempered distributions, Gelfand triplets, and the theory of generalized eigenfunc-

tions, and
• tempered distributions and the Schwartz kernel theorem.

We will apply this to:

• the free quantum particle (Sect. 7.6.4),
• the harmonic oscillator (Sect. 7.6.7), and
• ideal gases (Sect. 7.6.8).

7.6 Von Neumann’s Rigorous Approach

Rigorous propagator theory is based on von Neumann’s operator calculus
for functions of self-adjoint operators.

Folklore

As a preparation for the rigorous propagator theory to be considered in the next
section, let us summarize von Neumann’s operator calculus. In this section, we con-
sider an arbitrary complex separable Hilbert space X of finite or infinite dimension.
The inner product on X is denoted by 〈ψ|ϕ〉 for all ϕ, ψ ∈ X. For fixed initial time
t0, the given function ψ : [t0,∞[→ X with values in the Hilbert space X is called
continuously differentiable iff the following is met:

• For all t > t0, the derivative ψ̇(t) := limh→0 h−1(ψ(t + h) − ψ(t)) exists (in the
sense of the convergence on the Hilbert space X).

• The function t �→ ψ(t) is continuous on the closed interval [0,∞[.

• The function t �→ ψ̇(t) is continuous on the open interval ]t0,∞[, and the limit

limt→t0+0 ψ̇(t) exists.

It is our goal to construct continuously differentiable solutions of the Schrödin-
ger equation i�ψ̇ = Hψ in the form ψ(t) = e−itH/�ψ0. To this end, we need the

construction of the operator e−itH/� .
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7.6.1 The Prototype of the Operator Calculus

The basic idea is to use a complete orthonormal system ϕ0, ϕ1, . . . in the infinite-
dimensional Hilbert space X.61 The two key formulas are given by the series ex-
pansions

Hϕ =
∞
X

k=0

Ek · 〈ϕk|ϕ〉ϕk for all ϕ ∈ D(H) (7.98)

and

F(H)ϕ =
∞
X

k=0

F (Ek) · 〈ϕk|ϕ〉ϕk for all ϕ ∈ D. (7.99)

To discuss this, observe first that

• the infinite series
P∞

k=0 akϕk with complex numbers a0, a1, a2, . . . is convergent
iff

•
P∞

k=0 |ak|2 < ∞.

In particular, the completeness of ϕ0, ϕ1, . . . guarantees that

ϕ =

∞
X

k=0

〈ϕ|ϕk〉 ϕk for all ϕ ∈ X.

(i) The operator H: We are given the real numbers E0, E1, . . . We define

Hϕk := Ekϕk, k = 0, 1, . . .

In a natural way, we want to extend the operator H to a linear subspace D(H)
of X. To this end, we define

D(H) := {ϕ ∈ X :

∞
X

k=0

|Ek|2|〈ϕ|ϕk〉|2 < ∞}.

In other words, we have ϕ ∈ D(H) iff the infinite series from (7.98) is convergent
in X. Now, for all ϕ ∈ D(H), we define Hϕ by the convergent series (7.98). In
particular, ϕk ∈ D(H) for all k.

The operator H : D(H) → X is self-adjoint.
The spectrum σ(H) of H is the closure of the set {E0, E1, . . .}. The resolvent
set �(H) of the operator H is the largest open subset of the complex plane
which does not contain the energy values E0, E1, . . .

(ii) The operator F(H) : D → X: We are given the function F : R → C. Let D
be the set of all elements ϕ of X such that the series (7.99) is convergent.
Explicitly,

D := {ϕ ∈ X :

∞
X

k=0

|F (Ek)|2|〈ϕk|ϕ〉|2 < ∞}.

Finally, for any ϕ ∈ D, define F(H)ϕ by the convergent series (7.99). The
operator F(H) : D → X is self-adjoint if the function F is real-valued.

61 If the Hilbert space X is finite-dimensional with dimension N = 1, 2, . . ., then all
of the following formulas remain valid if we replace the symbol

P∞
k=0 by

PN−1
k=0 .
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(iii) The spectral family {Eλ(H)}λ∈R of the self-adjoint operator H. Fix the real
number λ and consider the function

eλ(E) :=

(

1 if E < λ,

0 if E ≥ λ.
(7.100)

In other words, eλ is the characteristic function of the open interval ] −∞, λ[.
Define

Eλ(H)ϕ :=

∞
X

k=1

eλ(Ek)〈ϕk|ϕ〉ϕk.

This series is convergent for all ϕ ∈ X. The operator Eλ(H) : X → X is
the orthogonal projection onto the closed linear subspace spanned by all the
eigenvectors ϕk with Ek ∈] −∞, λ[.

(iv) The propagator e−i(t−t0)H/� : Let t, t0 ∈ R. Since |e−i(t−t0)/� | ≤ 1, the operator

e−i(t−t0)H/�ϕ :=

∞
X

k=0

e−i(t−t0)Ek/�〈ϕk|ϕ〉ϕk

is defined for all ϕ ∈ X. In addition, the operator e−i(t−t0)H/� : X → X is
unitary. For given ψ0 ∈ D(H), set

ψ(t) := e−i(t−t0)H/�ψ0 for all t ∈ R.

Then the function ψ : R → X is continuously differentiable, and it is a solution
of the Schrödinger equation.

i�ψ̇(t) = Hψ(t), t ∈ R, ψ(t0) = ψ0.

Proof. First use formal differentiation. This yields

i�ψ̇(t) =

∞
X

k=0

Eke−i(t−t0)Ek/�〈ϕk|ϕ〉ϕk = Hψ(t).

Since we have the convergent majorant series

∞
X

k=0

|Eke−i(t−t0)Ek/�〈ϕk|ϕ〉|2 ≤
∞
X

k=0

|Ek|2|〈ϕk|ϕ〉|2 < ∞,

the formal differentiation can be rigorously justified in the same way as for
classical infinite series (see Sect. 5.8, Zeidler (1995a), quoted on page 1049).�

(v) The Euclidean propagator e−(t−t0)H/� : Suppose that Ek ≥ 0 for all k. Fix the

real number t0. Let t ≥ t0. Since 0 ≤ e−(t−t0)Ek/� ≤ 1, the operator

e−(t−t0)H/�ϕ :=
∞
X

k=0

e−(t−t0)Ek/�〈ϕk|ϕ〉ϕk

is defined for all ϕ ∈ X. We have ||e−(t−t0)H/�ϕ|| ≤ ||ϕ|| for all ϕ ∈ X, that is,

the operator e−(t−t0)H/� : X → X is non-expansive.62 For given ψ0 ∈ D(H),
set

62 Note that ||e−(t−t0)H/�ϕ||2 =
P∞

k=0 |e
−(t−t0)Ek/�〈ϕk|ϕ〉|2. Thus, for all t ≥ t0,

||e−(t−t0)H/�ϕ||2 ≤
∞
X

k=0

|〈ϕk|ϕ〉|2 = ||ϕ||2.
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ψ(t) := e−(t−t0)H/�ψ0 for all t ≥ t0.

Then the function ψ : R → X is continuously differentiable on [t0,∞[, and it
is a solution of the Euclidean Schrödinger equation

�ψ̇(t) = −Hψ(t), t ≥ t0, ψ(t0) = ψ0.

(vi) The resolvent (EI − H)−1: Let E be a non-real complex number. The series

REϕ :=
∞
X

k=0

〈ϕk|ϕ〉
E − Ek

ϕk

is convergent for all ϕ ∈ X. This follows from

˛

˛

˛

˛

1

E − Ek

˛

˛

˛

˛

2

=
1

(�E)2 + (Ek −�E)2
≤ 1

(�E)2
.

Hence ||RE ||2 ≤ const(E)·||ϕ||2. Thus, the operator RE is linear and continuous.
In addition, it can be easily shown that RE = (EI − H)−1.

(vii) The Fourier–Laplace transform of the propagator from time to energy: The
integral

Z ∞

−∞
eiEtf(t)dt

does not exist (in the classical sense) if E is a real number and f(t) ≡ 1.
However, if we choose both the complex energy E := E + iε (with ε > 0) and
the truncation function f(t) := θ(t − t0), then the integral63

Z ∞

t0

eiEte−εtdt

exists because of the damping factor e−εt. This is the basic idea behind the use
of both truncated propagators and complex energies in quantum physics. In
order to explain this, choose the linear self-adjoint operator H : D(H) → X as
in (i) above. Let t, t0 be arbitrary real time parameters, and let E be a non-real
complex parameter called energy. It is convenient to introduce the following
operators, which we will frequently encounter in this treatise:

• P (t, t0) := e−i(t−t0)H/� (propagator),

• P+(t, t0) := θ(t− t0)P (t, t0) (retarded propagator or Feynman propagator),

• P−(t, t0) := −θ(t0 − t)P (t, t0) (advanced propagator),

• G(E) := (H − EI)−1 (Green’s operator),64

• G+(E) := G(E) if �(E) > 0 (retarded!Green’s operator),
• G−(E) := G(E) if �(E) < 0 (advanced!Green’s operator).

Proposition 7.17 Let t, t0 ∈ R and ϕ, χ ∈ X. Then:
(i) For all energies E in the open upper half-plane (i.e., �(E) > 0), we have the
Fourier–Laplace transformation

63 Recall that θ(t− t0) = 1 if t ≥ t0 and θ(t− t0) = 0 if t < t0 (Heaviside function).
64 Since the operator G(E) depends on the choice of the complex energy E , we also

call it the energetic Green’s operator.
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〈χ|G+(E)ϕ〉 =
i

�

Z

R

eiE(t−t0)/�〈χ|P+(t, t0)ϕ〉 dt (7.101)

together with the inverse transformation

〈χ|P+(t, t0)ϕ〉 =
1

2πi
· PV

Z

R

e−iE(t−t0)/�〈χ|G+(E)ϕ〉 d�(E)

where we assume that t �= t0.
(ii) For all energies E in the open lower half-plane (i.e., �(E) < 0), we have
the Fourier–Laplace transformation

〈χ|G−(E)ϕ〉 =
i

�

Z

R

eiE(t−t0)/�〈χ|P−(t, t0)ϕ〉 dt (7.102)

together with the inverse transformation

〈χ|P−(t, t0)ϕ〉 =
1

2πi
· PV

Z

R

e−iE(t−t0)/�〈χ|G−(E)ϕ〉 d�(E)

where we assume that t �= t0.

Complete proofs for this prototype of operator calculus including the statements
above can be found in Zeidler (1995a), Chap. 5 (see the references on page 1049).
For the proof of Prop. 7.17 above, we refer to Problem 7.36. The Fourier–Laplace
transform is also briefly called the Laplace transform.65

Interestingly enough, both retarded (i.e., causal) propagators and advanced
(i.e., non-causal) propagators play a crucial role in quantum field theory.

From the mathematical point of view, the reason is that the relevant perturbation
theory depends on quantities which are constructed by using both retarded and
advanced propagators. Physicists interpret this by saying that

• the interaction between elementary particles is governed by virtual particles
(which are graphically represented by the internal lines of the Feynman dia-
grams), and

• the virtual particles violate basic laws of physics (e.g., the relation between energy
and momentum or causality).

7.6.2 The General Operator Calculus

The observation which comes closest to an explanation of the mathematical
concepts cropping up in physics which I know is Einstein’s statement that
the only physical theories which we are willing to accept are the beautiful
ones. It stands to argue that the concepts of mathematics, which invite
the exercise of much a wit, have the quality of beauty.66

Eugene Wigner, 1959

65 Laplace (1749–1827), Fourier (1768–1830).
66 E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences,

Richard Courant Lecture in Mathematical Sciences delivered at New York Uni-
versity, May 11, 1959. In: E. Wigner, Philosophical Reflections and Syntheses.
Annotated by G. Emch. Edited by J. Mehra and A. Wightman, Springer, New
York, 1995, pp. 534–549.



500 7. Quantization of the Harmonic Oscillator

Let X be a complex separable finite-dimensional or infinite-dimensional Hilbert
space. We make the following assumption:

(A) The linear operator H : D(H) → X is self-adjoint.

This includes tacitly that the domain of definition D(H) is a linear dense subspace
of X. Von Neumann’s famous spectral theorem tells us the following.

Theorem 7.18 For each pair ϕ ∈ D(H), χ ∈ X, there exists a (complex-valued)
measure μχ,ϕ on the real line such that

〈χ|Hϕ〉 =

Z

R

E · dμχ,ϕ(E).

We have ϕ ∈ D(H) iff
R

R
|E|2dμϕ,ϕ(E) < ∞.

Furthermore, if ||ϕ|| = 1, then μϕ,ϕ is a classical probability measure, that is,
R

R
dμϕ,ϕ = 1. In order to get a physical interpretation, assume that the operator

H is the Hamiltonian of a quantum system. Let ϕ be a unit vector in the Hilbert
space X, that is, ||ϕ|| = 1, and let Ω be an interval on the real line. Then the real
number

Z

Ω

dμϕ,ϕ(E)

is the probability of finding the quantum system in the state ϕ. Moreover,

Ē :=

Z

R

E · dμϕ,ϕ(E)

is the mean energy value measured in the state ϕ of the quantum system. Note
that this spectral theorem depends on the self-adjointness of the operator H, but
it fails for formally self-adjoint operators which are not self-adjoint. Therefore, as
it was discovered by von Neumann in 1929, the full probabilistic interpretation of
observables in quantum mechanics is only valid for self-adjoint operators.

Let F : R → C be a continuous function (or, more generally, a piecewise con-
tinuous and bounded function like the Heaviside function). Let D be the set of
all elements ϕ in X with

R

R
|F (E)|2dμϕ,ϕ(E) < ∞. The von Neumann operator

calculus is based on the following fact.

Theorem 7.19 There exists a uniquely determined self-adjoint operator denoted
by F(H) : D → X such that, for all ϕ ∈ D, χ ∈ X, there holds the key relation
〈χ|F(H)ϕ〉 =

R

R
F (E) · dμχ,ϕ(E).

For example, if F (E) ≡ 1, then F(H) = I (unit operator), and for all χ, ϕ in X we
get 〈χ|ϕ〉 =

R

R
dμχ,ϕ.

Sketch of the proof. An elegant short proof of Theorems 7.18 and 7.19 can be
found in I. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems:
Rigorous Results, Springer, New York, 1983. In the spirit of the Dirac calculus, the
idea of Sigal’s proof is to use the regularized (rescaled) resolvent

δε(EI − H) :=
1

2π
· (H − (E + iε)I)−1, E ∈ R, ε > 0

with the typical property

w − lim
E0→+∞

Z E0

−E0

δε(EI − H)dE = I, ε > 0. (7.103)
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This justifies the designation as a (regularized) operator delta function. Note that
we use the weak limit in (7.103).67

Step 1: The operator F(H) in the regular case: Let F → C be a smooth function
with compact support, that is, F ∈ D(R). We use the key formula

Fε(H) := w − lim
E0→+∞

Z E0

−E0

δε(EI − H)F (E)dE

and the limit formula
F(H) := w − lim

ε→+0
Fε(H)

in order to introduce the operator F(H) on the Hilbert space X. It can be shown
that the limits exist.

Step 2: The spectral family {Eλ}λ∈R of the operator H: We extend the definition
of the operator F(H) to more general (discontinuous) bounded functions F : R → C

which are the pointwise limit

F (E) = lim
n→∞

Fn(E), E ∈ R

of an increasing sequence (Fn) of nonnegative functions Fn ∈ D(R). In particular,
choosing the characteristic function eλ of the open interval ] − ∞, λ[, we get the
operator Eλ(H).

Step 3: The spectral measure μ: For given ϕ ∈ X with ||ϕ|| = 1, we define the
probability measure μϕ,ϕ on the real line by setting

Z

]−∞,λ[

dμϕ,ϕ(E) := 〈ϕ|Eλϕ〉.

This is the measure of the open interval ] − ∞, λ[; the function λ �→ 〈ϕ|Eλϕ〉
represents the distribution function of the measure μϕ,ϕ, in terms of the theory of
probability. More generally, for given ϕ, χ ∈ X, we construct the (complex-valued)
measure μχ,ϕ on the real line by setting

Z

]−∞,λ[

dμχ,ϕ(E) = 〈χ|Eλϕ〉. (7.105)

The spectral family of H has the following properties for all real numbers λ, λ0 and
all ϕ ∈ X:

(S1) The operator Eλ : X → X is an orthogonal projection (i.e., the operator Eλ

is linear, continuous, self-adjoint, and E2
λ = Eλ).

(S2) The function λ �→ 〈ϕ|Eλϕ〉 is nondecreasing on the real line.
(S3) limλ→−∞ Eλϕ = 0 and limλ→∞ Eλϕ = ϕ.
(S4) limλ→λ0−0 Eλϕ = Eλ0ϕ. �

67 Recall that, by definition, the weak limit

w − lim
n→∞

ψn = ψ (7.104)

exists on the Hilbert space X iff limn→∞〈ϕ|ψn〉 = 〈ϕ|ψ〉 for all ϕ ∈ X. In
particular, let ϕ1, ϕ2, . . . be a complete orthonormal system in X. Then the weak
convergence (7.104) is equivalent to the boundedness of the sequence (ψn) and
the convergence of all the Fourier coefficients, that is, limn→∞〈ϕk|ψn〉 = 〈ϕk|ψ〉
for all k.
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The spectral family {Eλ} of H is also called the spectral resolution of H.

Corollary 7.20 For any self-adjoint operator H : D(H) → X, there exists pre-
cisely one spectral family {Eλ} with the properties (S1)–(S4) such that Theorem
7.18 holds with (7.105). Explictly, the spectral family is given by the limit

〈ψ|Eλϕ〉 = lim
δ→+0

lim
ε→+0

Z λ+δ

−∞
〈ψ|(Rs−iε − Rs+iε)ϕ〉ds

for all ψ, ϕ ∈ X. Here, Rμ := (μI − H)−1 is the resolvent of H.

In terms of physics, the spectral family of the observable H uniquely determines the
probability measure of H. The proof of the Corollary can be found in K. Jörgens
and F. Rellich, Eigenvalue Problems for Ordinary Differential Equations, p. 113,
Springer, Berlin, 1976 (in German). For other proofs of the crucial spectral theorem,
we refer to the following monographs:

E. Nelson, Topics in Dynamics: Flows, Princeton University Press, 1969.

K. Maurin, Methods of Hilbert Spaces, Polish Scientific Publishers, War-
saw, 1972.

M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Func-
tional Analysis, Academic Press, New York, 1972.

F. Riesz and B. Nagy, Functional Analysis, Frederyck Ungar, New York,
1978.

F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.

K. Yosida, Functional Analysis, Springer, New York, 1995.

P. Lax, Functional Analysis, Wiley, New York, 2002.

Von Neumann’s generalized Fourier transform. Alternatively, von Neu-
mann’s spectral theorem above can be obtained from von Neumann’s diagonaliza-
tion theorem:

Each linear self-adjoint operator is unitarily equivalent to a multiplication

operator f̂(λ) �→ λf̂(λ) on an appropriate function space.

This represents a far-reaching generalization of the classical Fourier transformation

f �→ f̂ . The precise formulation can be found in Sect. 12.2.3 of Vol. I in the setting
of the rigorous justification of the Dirac calculus.

Gelfand’s theory of C∗-algebras. It was discovered by Gelfand in the 1940s
that one can use the theory of C∗ algebras in order to construct von Neumann’s
operator calculus (see the monographs Maurin (1972) and Yosida (1995) quoted
above). Note that C∗-algebras play a fundamental role in quantum mechanics,
quantum field theory, statistical physics, the Standard Model in particle physics,
quantum gravity, and quantum information. The point is that C∗-algebras allow us
to describe states and observables in a general setting. We will thoroughly study
this in Vol. IV on quantum mathematics (see also Sect. 7.16.3ff for the definition
of C∗-algebras together with the construction of the Weyl quantization functor).

The Rellich–Kato perturbation theorem. The operator

H + C : D(H) → X

is self-adjoint if the following conditions are satisfied:

• The operator H : D(H) → X is self-adjoint.
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• The perturbation C : D(C) → X is linear and symmetric, and the domain of
definition D(C) contains the set D(H).

• There are fixed real numbers 0 ≤ a < 1 and b ≥ 0 such that

||Cϕ|| ≤ a||Hϕ|| + b||ϕ|| for all ϕ ∈ D(H).

In particular, the assumptions are satisfied if the operator C : X → X is linear,
symmetric, and continuous. The proof can be found in Zeidler (1995a), p. 417 (see
the references on page 1049). In 1951, this criterion was used by Kato in order to
prove that the Hamiltonian operators of molecules are essentially self-adjoint.

Classification of the spectrum. As we will discuss below, every self-adjoint
operator H : D(H) → X generates a unique decomposition

X = Xbound ⊕ Xscatt ⊕ Xsing (7.106)

of the Hilbert space X into pairwise orthogonal closed linear subspaces. It turns
out that, in terms of quantum mechanics,

• the elements of Xbound correspond to bound states of the quantum system,
• and the elements of Xscatt correspond to scattering states.

The elements of Xsing are called singular states. In regular situations, the singular
space Xsing is trivial, that is, it only consists of the zero element.68

(i) Bound states: The element ϕ of X is called an eigenstate of the Hamiltonian H
iff there exists a real number E such that

Hϕ = Eϕ, ϕ �= 0.

The number E is called the eigenvalue to the eigenstate ϕ.69 By definition, the
space Xbound is the closed linear hull of the eigenstates of H. The eigenstates
of H form a complete orthonormal system of Xbound.

(ii) Classification of states by means of the spectral measure: Let the nonzero state
ϕ ∈ X be given. Consider the spectral measure μϕ on the real line.70 Then:
• ϕ ∈ Xbound iff μϕ is a point measure, that is, there exists a finite or countable

set Ω = {x1, x2, . . .} such that μϕ({xk}) > 0 for all k and μϕ(R \ Ω) = 0.
• ϕ ∈ Xscatt iff the measure μϕ has a density, that is, there exists a nonnegative

integrable function � : R → R such that μϕ(Ω) =
R

Ω
�(x)dx for all intervals

Ω.71

• ϕ ∈ Xsing iff the measure μϕ is singular, that is, there exists a set Ω of
Lebesgue measure zero such that μϕ(Ω) > 0 and μϕ(R \ Ω) = 0.

The operator H maps each of the three Hilbert spaces Xbound, Xscatt and Xsing

into itself.

68 The importance of both the absolutely continuous spectrum and the subspace
Xscatt for the functional-analytic scattering theory will be discussed in Sect. 9
on page 747.

69 On page 526 we will introduce eigencostates (or generalized eigenfunctions). Such
costates do not always live in the infinite-dimensional Hilbert space X, but in
an extension of X. Observe that each eigenstate is an eigencostate, but the con-
verse is not always true. The eigenvalues of eigencostates are called generalized
eigenvalues.

70 To simplify notation, we write μϕ instead of μϕ,ϕ.
71 Equivalently, the monotone function λ �→ 〈ϕ|Eλϕ〉 is differentiable almost every-

where on R, and the first derivative is integrable over R.
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• The spectrum of the restriction H : D(H) ∩ Xbound → Xbound is called the
pure point spectrum σpp(H).

• The spectrum of the restriction H : D(H) ∩ Xscatt → Xscatt is called the
absolutely continuous spectrum σac(H).

• The spectrum of the restriction H : D(H) ∩ Xsing → Xsing is called the
singular spectrum σsing(H).

We have the following representation of the spectrum of the operator H:

σ(H) = σpp(H) ∪ σac(H) ∪ σsing(H).

The union σc(H) := σac(H)∪σsing(H) of the disjoint sets σac(H) and σsing(H)
is called the continuous spectrum of H.
Recall that σ(H) is a closed subset of the real line, and the open complement
�(H) := C \ σ(H) is the resolvent set of H. We have E ∈ �(H) iff the inverse
operator (EI − H)−1 : X → X (i.e., the resolvent) exists as a linear contin-
uous operator. We say that σpp(H) is empty iff Xbound = {0}. An analogous
terminology will be used for σac(H) and σsing(H).

The discrete spectrum. By definition, the discrete spectrum σdisc of the
operator H is the set of all eigenvalues of finite multiplicity which are isolated
points of the spectrum σ(H).

The Weyl stability theorem for the essential spectrum. By definition,
the essential spectrum σess(H) of the operator H is the complement to the discrete
spectrum. That is, we have the disjoint decomposition

σ(H) = σdisc(H) ∪ σess(H).

Explicitly, the essential spectrum contains precisely the following points:

• the eigenvalues of infinite multiplicity,
• the accumulation points of the set of eigenvalues,
• the points of the continuous spectrum.

Weyl proved that we have E ∈ σess(H) iff there exists a sequence (ϕn) in the
domain of definition D(H) with

• limn→∞ ||Hϕn − Eϕn|| = 0;
• ||ϕn|| = 1 for all n and w − limn→∞ ϕn = 0;
• the sequence (ϕn) has no convergent subsequence.

Such sequences are called Weyl sequences. The following theorem tells us that the
essential spectrum of the self-adjoint operator H is invariant under compact pertur-
bations. The linear operator C : X → X is called compact iff it is continuous and
each sequence (Cϕn) contains a convergent subsequence provided (ϕn) is bounded.

Theorem 7.21 Let H : D(H) → X be a self-adjoint operator, and let C be a
linear compact self-adjoint operator. Then the operator H + C is self-adjoint and
σess(H + C) = σess(H).

A variant of this theorem was proven by Weyl in 1909.72

Characterization of the spectrum by means of the spectral family. Let
H : D(H) → X be a linear self-adjoint operator on the complex Hilbert space X.
Set Pλ0ψ := limλ→λ0+0(Eλ − Eλ0)ψ for all ψ ∈ X.

72 H. Weyl, On the completely continuous difference of two bounded quadratic
forms, Rend. Circ. Mat. Palermo 27 (1909), 373–392 (in German).
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Theorem 7.22 (i) The real number λ0 is not contained in the spectrum σ(H) of
the operator H iff the spectral family {Eλ}λ∈R is constant in some open neighborhood
of the point λ0.

(ii) The real number λ0 is an eigenvalue of H iff the spectral family jumps at the
point λ0. That is, Pλ0 �= 0. The operator Pλ0 : X → X is the orthogonal projection
operator onto the eigenspace of H to the eigenvector λ0.

(iii) The real number λ0 is contained in the essential spectrum σess(H) iff
dim(Eλ0+ε − Eλ0−ε)(X) = ∞ for all ε > 0.

A comprehensive summary of spectral theory, measure theory, and other tools of
modern analysis together with applications can be found in the Appendix to Zeidler,
Nonlinear Functional Analysis and its Applications, Vol. IIB, Springer, New York,
1986. We also refer to Reed and Simon, Methods of Modern Mathematical Physics,
Vols. 1–4, Academic Press, New York, 1972–1979.

7.6.3 Rigorous Propagator Theory

The function ψ(t) = e−i(t−t0)H/�ψ(t0), for all times t ∈ R, describes the
dynamics of a quantum system corresponding to the self-adjoint Hamilto-
nian H.

Folklore

It is our goal to translate the formal propagator theory from Sect. 7.5.3 into a
rigorous mathematical setting.

Quantum Dynamics

The abstract Schrödinger equation. Consider the initial-value problem

i�ψ̇(t) = Hψ(t), t > t0, ψ(t0) = ψ0. (7.107)

This is the basic equation in quantum mechanics.

Theorem 7.23 Let H : D(H) → X be a linear self-adjoint operator on the com-
plex separable Hilbert space X. For given initial state ψ0 ∈ D(H), the Schrödinger
equation (7.107) has a unique, continuously differentiable solution ψ : [t0,∞[→ R.
Explicitly,

ψ(t) := e−i(t−t0)H/�ψ0, t ≥ t0. (7.108)

The operator e−i(t−t0)H/� : X → X is unitary for all times t ∈ X.

The proof can be found in H. Triebel, Higher Analysis, Sect. 22, Barth, Leipzig,
1989.

Generalized solution. For given initial value ψ0 ∈ X, the function ψ = ψ(t)
is well-defined by (7.108). This function is continuous on [0,∞[. In contrast to this,

if ψ0 /∈ D(H), then as a rule, it is not true that the derivative ψ̇(t) exists. Therefore,

we call ψ(t) = e−i(t−t0)H/�ψ0 with ψ0 ∈ X a generalized solution of the Schrödinger
equation (7.107). This solution is defined for all times t ∈ R.

One-parameter unitary groups. By definition, a one-parameter unitary
group on the Hilbert space X is a family {U(t)}t∈R of operators with the following
properties:
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• U(t) : X → X is unitary for all times t ∈ R.
• U(t + s) = U(t)U(s) for all t, s ∈ R, and U(0) = I.

Such a group is called strongly continuous iff the function t �→ U(t)ϕ0 is continuous
on the real line for all ϕ0 ∈ X. The following classical result was proven by Stone
(1903–1989) in 1932. 73

Theorem 7.24 Let X be a complex separable Hilbert space.
(i) If {U(t)}t∈R is a strongly continuous, one-parameter unitary group on X,

then there exists a unique self-adjoint operator H : D(H) → X such that

U(t) = e−itH/�ϕ0 for all t ∈ R. (7.109)

We have Hϕ0 = limt→0
U(t)ϕ0−ϕ0

t
. This limit exists precisely iff ϕ0 ∈ D(H). The

operator H is called the generator of the one-parameter unitary group.
(ii) Conversely, if H : D(H) → X is a self-adjoint operator, then formula

(7.109) defines a strongly continuous, one-parameter unitary group on X.

The proof can be found in Zeidler, Nonlinear Functional Analysis and its Applica-
tions, Vol. II/A, Sect. 19.21, Springer, New York, 1986.

The Feynman propagator. Let t, t0 ∈ R. In terms of Theorem 7.23, the
unitary operator

P (t, t0) := e−i(t−t0)H/�

on the Hilbert space X is called the propagator at time t (generated by the Hamil-
tonian H with respect to the initial time t0). The truncated operator74

P+(t, t0) := P (t, t0)θ(t − t0), t ∈ R

is called the retarded propagator (or the Feynman propagator) at time t (with
respect to the initial time t0.) Obviously, P (t0, t0) = I. We get

P (t, t0) = P (t, τ)P (τ, t0) for all t, τ, t0 ∈ R.

This so-called reversible propagator equation (or group equation) follows from

U(t − τ)U(τ − t0) = U(t − τ + τ − t0) = U(t − t0),

which is the consequence of the fact that {U(t)}t∈R forms a group.

Euclidean Quantum Dynamics

The Euclidean Schrödinger equation. Consider the initial-value problem

ψ̇(t) = −Hψ(t), t > t0, ψ(t0) = ψ0. (7.110)

We assume that the linear self-adjoint operator H : D(H) → X is nonnegative,
that is, 〈ϕ|Hϕ〉 ≥ 0 for all ϕ ∈ D(H). Observe that both the diffusion equation
and the heat conduction equation are of this type. Since diffusion is an irreversible
process, we expect that the initial condition ψ0 does not uniquely determine the
state ψ(t) in the past t < t0. Mathematically, this is reflected by the fact that the
solution (7.111) below is not defined for t < t0.

73 M. Stone, On one-parameter unitary groups in Hilbert space, Ann. Math. 33
(1932), 643–648.

74 Recall that θ(t−t0) := 1 if t ≥ t0, and θ(t−t0) := 0 if t < t0 (Heaviside function).
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Theorem 7.25 For given ψ0 ∈ D(H), the Euclidean Schrödinger equation (7.110)
has a unique, continuously differentiable solution ψ : [t0,∞[→ R. This solution is
given by

ψ(t) = e−(t−t0)Hψ0, t ≥ t0. (7.111)

The operator family {e−tH}t≥0 forms a non-expansive semigroup, that is, the linear

self-adjoint operators e−tH : X → X satisfy

e−tHe−sH = e−(t+s)H for all t, s ≥ 0,

as well as e−tH
|t=0 = I, and supt≥0 ||e−tH || ≤ 1.

The proof can be found in H. Triebel, Higher Analysis, Sect. 22, Barth, Leipzig,
1989. In order to understand the specifics of the Euclidean quantum dynamics,
suppose that the nonnegative self-adjoint operator H : D(H) → X has a complete
orthonormal system ϕ0, ϕ1, ϕ2, . . . of eigenvectors with Hϕk = Ekϕk for all k. Then
Ek = Ek〈ϕk|ϕk〉 = 〈ϕk|Hϕk〉 ≥ 0 for all k. For ψ0 ∈ X, the Parseval equation tells
us that ||ψ0||2 =

P∞
k=1 |〈ϕk|ψ〉|2. The series

e−tHψ0 =
∞
X

k=1

e−Ekt〈ϕk|ψ〉ϕk (7.112)

is convergent iff
P∞

k=0 e−2tEk |〈ϕk|ψ〉|2 < ∞. This is true if t ≥ 0 because of 0 ≤
e−Ekt ≤ 1. However, if t < 0, then the convergence of (7.112) can be violated. This
reflects the irreversibility of diffusion and heat conduction processes.

The Euclidean propagator. Let t ≥ t0. The operator

P (t, t0) := e−(t−t0)H

is non-expansive on the Hilbert space X, that is supt≥t0
||e−(t−t0)H || ≤ 1. This

operator is called the Euclidean propagator at time t (generated by the Hamiltonian
H with respect to the initial time t0). Obviously, P (t0, t0) = I. Furthermore, we
have

P (t, t0) = P (t, τ)P (τ, t0) for all t ≥ τ ≥ t0.

This so-called irreversible propagator equation (or semi-group equation) follows

from e−(t−τ)He−(τ−t0)H = e−(t−τ+τ−t0)H = e−(t−t0)H , by Theorem 7.25.
Historical remarks. In the 19th century, mathematicians and physicists (e.g.,

Gauss, Green, Fourier, Riemann and Maxwell) discovered that one can use integral
formulas of the type

u(x) =

Z

G(x, y)f(y)dy

in order to represent the solutions u of partial differential equations of the form
Lu = f which appear in hydrodynamics, gas-dynamics, elasticity, heat conduction,
diffusion, and electrodynamics. The integral kernel G is called the Green’s function.

Functional analysis was founded by Hilbert in the early 1910s in order to gen-
eralize Fredholm’s theory of integral equations. At this time, differential equations
were reduced to integral equations with Green’s functions as integral kernels. In
von Neumann’s approach to quantum mechanics in the late 1920s, differential op-
erators were regarded as independent mathematical objects, namely, as self-adjoint
operators in a Hilbert space. In contrast to this, in his monograph
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Principles of Quantum Mechanics,

Clarendon Press, Oxford, 1930, Dirac used his calculus in order to construct (gener-
alized) integral kernels like the Dirac delta function. In the preface to his monograph

Mathematical Foundations of Quantum Mechanics,

Springer, Berlin 1932, von Neumann pointed out that he did not use Dirac’s method
because of lack of mathematical rigor.

In the 1940s, Feynman was strongly influenced by Dirac’s approach. The Feyn-
man propagators are nothing other than special Green’s functions. In the 1950s, the
two approaches due to Dirac and von Neumann were combined with each other by
Gelfand; he used Laurent Schwartz’s theory of generalized functions founded in the
1940s and Grothendieck’s theory of nuclear spaces. As a typical example, we will
consider the free quantum particle in Sect. 7.6.4. In the 1960s, the theory of pseudo-
differential operators was created by Kohn and Nirenberg; this approach represents
a further generalization of the theory of operator kernels. In quantum mechanics,
this is related to the Weyl calculus introduced in the late 1920s by Hermann Weyl
(see Sect. 7.12 on Weyl quantization).

Rigorous Operator Kernel

The operator kernel knows all about the operator.
Folklore

Let N = 1, 2, . . ., and let D be a dense subset of L2(R
N ). The linear continuous

operator A : L2(R
N ) → L2(R

N ) is said to have a continuous kernel iff there exists
a continuous function A : R

2N → C such that75

〈χ|Aϕ〉 =

Z

R2N

χ(x)†A(x, y)ϕ(y)dxNdyN (7.113)

for all ϕ, χ ∈ D. This kernel is unique. In fact, if A and B are two continuous kernels
corresponding to the operator A, then

Z

R2N

(χ(x)ϕ(y)†)†(A(x, y) − B(x, y))dxNdyN = 0

for all ϕ, χ ∈ D. Since the set of functions (x, y) �→ χ(x)ϕ(y)† with ϕ, χ ∈ D is
dense in the complex Hilbert space L2(R

2N ), we obtain the desired result A(x, y) =
B(x, y) on R

2N .
More generally, if relation (7.113) is true for a function A ∈ L2(R

2N ), then this
function is uniquely determined (as an element of the Hilbert space L2(R

2N ) by
the operator A. The function A is called the L2-kernel of the operator A. Equation
(7.113) generalizes the matrix equation

χ†Aϕ =

n
X

j,k=1

χ†
jAjkϕk.

75 In classical mathematics, one uses (Aϕ)(x) =
R

RN A(x, y)ϕ(y)dyN . This is equiv-
alent to (7.113). However, the bilinear formulation (7.113) is crucial for defining
the notion of kernel for generalized functions.
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Therefore, the kernel (x, y) �→ A(x, y) can be regarded as a continuous version of
the complex (n × n)-matrix (Ajk). The kernel A is called self-adjoint iff

A(x, y)† = A(y, x) for all x, y ∈ R
N .

This generalizes self-adjoint matrices. In 1904 Hilbert discovered the importance of
self-adjoint integral kernels for both

• the spectral theory of integral operators and
• the Fourier expansions to regular boundary-value problems for second-order or-

dinary differential equations (i.e., the regular Sturm–Liouville problems).

In 1910, Weyl generalized this to singular Sturm–Liouville problems which are
typical for computing the spectra of atoms and molecules in quantum mechanics.76

7.6.4 The Free Quantum Particle as a Paradigm of Functional
Analysis

Extend the pre-Hamiltonian to a self-adjoint operator on an appropriate
Hilbert space X of quantum states, and use costates related to a Gelfand
triplet with respect to X.

The golden rule

The modern theory of differential and integral equations is based on functional
analysis, which was created by Hilbert (1862–1943) in the beginning of the 20th
century.77 The development of functional analysis was strongly influenced by the
questions arising in quantum mechanics and quantum field theory. In this section,
we want to study thoroughly how the motion of a free quantum particle on the real
line is related to fundamental notions in functional analysis.

This is Ariadne’s thread in functional analysis.

This way, the formal considerations from Sect. 7.5.3 will obtain a sound basis for
the free quantum particle.

The main idea of the modern strategy in mathematics and physics consists in
describing differential operators and integral operators by abstract operators related
to generalized integral kernels.

(i) In the language used by physicists, this concerns the Dirac calculus based on
Dirac’s delta function and Green’s functions (also called Feynman propaga-
tors).

(ii) In the language used by mathematicians this is closely related to:
• Lebesgue’s passage from the Riemann integral to the Lebesgue integral based

on measure theory in about 1900;
• von Neumann’s passage from formally self-adjoint operators to self-adjoint

operators and his generalization of the classical Fourier transform via spec-
tral theory in the late 1920s;

• Laurent Schwartz’s theory of generalized functions including the kernel the-
orem in the 1940s;

76 Weyl used methods on singular integral equations. These methods were devel-
oped in Weyl’s Ph.D. thesis advised by Hilbert in Göttingen in 1908.

77 As an introduction, we recommend P. Lax, Functional Analysis, Wiley, New
York, 2002, and E. Zeidler, Applied Functional Analysis, Vols. 1, 2, Springer,
New York, 1995.
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• the generalization of von Neumann’s spectral theory by Gelfand and Kost-
yuchenko in 1955 (based on quantum costates as generalized functions and
the corresponding Gelfand triplets);

• the extension of the Gelfand–Kostyuchenko approach to general nuclear
spaces by Maurin in 1959.78

Tempered Distributions

In order to translate the very elegant, but formal Dirac calculus into math-
ematics, one has to leave the Hilbert space of states used by von Neumann
in about 1930. Folklore

In what follows, we will use

• the space S(R) of smooth test functions ϕ : R → C which decrease rapidly at
infinity,

• and the space S ′(R) of tempered distributions introduced on page 615 of Vol. I.

Our basic tools will be

• the Fourier transform and
• the language of tempered distributions, and Gelfand triplets.

The main idea of our functional-analytic approach to the free quantum particle on
the real line is to study the three energy operators

Hpre ⊆ Hfree ⊆ Hd
pre.

Here, we start with Hpreϕ := − �
2

2m
d2ϕ
dx2 for all ϕ ∈ S(R). This is the one-dimensional

Laplacian. We first extend the (self-dual and formally self-adjoint) pre-Hamiltonian
Hpre : S(R) → S(R) on the space of test functions S(R) to the dual Hamiltonian

Hd
pre : S ′(R) → S ′(R)

on the space of tempered distributions. The restriction of the operator Hd
pre to the

Hilbert space L2(R) yields the self-adjoint Hamiltonian

Hfree : D(Hfree) → L2(R)

used by von Neumann. Here, S(R) ⊆ D(Hfree) ⊆ L2(R) where the domain D(Hfree)
of the free Hamiltonian Hfree is the Sobolev space W 2

2 (R). In general, Sobolev spaces
play a crucial role in the modern theory of linear and nonlinear partial differential
equations. We recommend:

L. Evans, Partial Differential Equations, Amer. Math. Soc., Providence,
Rhode Island, 1998.

Yu. Egorov and M. Shubin, Foundations of the Classical Theory of Partial
Differential Equations, Springer, New York, 1998.

78 I. Gelfand and A. Kostyuchenkov, On the expansion in eigenfunctions of differ-
ential operators and other operators, Doklady Akad. Nauk 103 (1955), 349–352
(in Russian).
K. Maurin, General eigenfunction expansion and the spectral representation of
general kernels: a generalization of distribution theory to Lie groups, Bull. Acad.
Sci. Polon. Sér. math. astr. et phys. 7 (1959), 471–479 (in German).
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Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern Theory
of Partial Differential Equations, Springer, New York, 1999.

P. Lax, Hyperbolic Partial Differential Equations, Courant Institute, New
York, 2007.

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods
for Science and Technology, Vols. 1–6, Springer, New York, 1988.

H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1992.

We also refer to the author’s monographs: Zeidler (1986), Vols. 1–4, and Zeidler
(1995a), (1995b) (see the references on page 1049).

The Schrödinger Equation

The instationary Schrödinger equation. The motion of a free quantum particle
of mass m > 0 on the real line is governed by the following initial-value problem

i�ψt(x, t) = − �
2

2m
ψxx(x, t), x, t ∈ R, ψ(0, x) = ψ0(x). (7.114)

Here, the wave function ψ0 is given at the initial time t = 0.
The stationary Schrödinger equation. Using the classical Fourier ansatz

ψ(x, t) := e−itE/�ϕ(x), equation (7.114) implies the eigenvalue problem

− �
2

2m
ϕ′′(x) = Eϕ(x), x ∈ R. (7.115)

We are looking for a nonzero function ϕ and a complex number E.

The Weyl lemma tells us that each solution of (7.115), in the sense of
distributions, is a classical smooth function.79

Explicitly, all the solutions of (7.115) are given by

ϕp(x) :=
eipx/�

√
2π�

, x ∈ R

with the energy E(p) := p2

2m
. Here, p is an arbitrary real number. For any p ∈ R,

we have

−i�
dϕp

dx
= pϕp.

The normalization factor of ϕp is chosen in such a way that we obtain the Parseval
equation (7.118) below.

The wave number. To simplify notation, physicists introduce the wave num-
ber k := p/�, which has the physical dimension of inverse length. Furthermore, for
fixed k ∈ R, let

χk(x) :=
eikx

√
2π

for all x ∈ R.

79 H. Weyl, The method of orthogonal projection in potential theory, Duke Math.
J. 7 (1940), 414–444. An elementary proof of the Weyl lemma for the Laplacian
can be found in Zeidler (1986), Vol. IIA, p. 78 (see the references on page 1049).
This is the origin of Hörmander’s theory of hypoelliptic differential operators
(see Sect. 8.6.3).
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Then − �
2

2m
χ′′

k = Ekχk for all k ∈ R with the energy

Ek =
�

2k2

2m
.

Hence |k| =

√
2mEk

�
.

Particle stream. If k > 0 (resp. k < 0), then the function

ψ(x, t) := e−itEk/�χk(x), x, t ∈ R

describes a homogeneous stream of free particles which moves from left to right
(resp. right to left). The particles of the stream have the momentum p = �k, the
velocity

v =
�k

m
,

and the particle density � = |χk|2 = 1
2π

(see Sect. 7.4.1 on page 459).
The main trouble. The plane-wave functions χk possess a well-defined physi-

cal meaning, but they do not live in the Hilbert space L2(R), since |χk(x)| = const
and hence

R

R
|χk(x)|2dx = ∞.

Thus, the Hilbert space setting is not enough for studying quantum me-
chanics.

In order to overcome this difficulty, one has to introduce the concept of costates and
eigencostates (generalized eigenfunctions). This will be done below. Before study-
ing the Schrödinger equation (7.114) and its Hamiltonian Hfree, we will investigate
Gelfand triplets, the extended Fourier transform, Sobolev spaces, the position op-
erator, and the momentum operator.

The Extended Fourier Transform

We want to study the operators Fpre ⊆ F ⊆ Fd
pre, where F : L2(R) → L2(R) is

unitary (i.e., F is a Hilbert space isomorphism). This is the key property of the
Fourier transform. As we will show below, in terms of physics the Fourier transform
describes the duality between position and momentum.

The classical Fourier transform. Recall that χk(x) := eikx
√

2π
for all x ∈ R

and all wave numbers k ∈ R. In terms of the function χk, the Fourier transform ϕ̂
of the test function ϕ ∈ S(R) reads as

ϕ̂(k) =

Z

R

χk(x)†ϕ(x) dx, for all k ∈ R. (7.116)

The inverse Fourier transform is given by

ϕ(x) :=

Z

R

χk(x)ϕ̂(k) dk for all x ∈ R. (7.117)

Here, the function ϕ is represented as a superposition of plane waves χk. For all
test functions ψ, ϕ ∈ S(R), we have the crucial Parseval equation

Z

R

ψ(x)†ϕ(x) dx =

Z

R

ψ̂(k)†ϕ̂(k) dk, (7.118)
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which shows that the Fourier transform respects the inner product on the Hilbert
space L2(R). Setting (Fpreϕ)(k) := ϕ̂(k) for all k ∈ R, we obtain the operator

Fpre : S(R) → S(R)

called the classical Fourier transform (or the pre-Fourier transform). This operator
is linear, bijective, and sequentially continuous (see Vol. I, p. 614). Moreover, for
all ϕ, ψ ∈ R, we have the following two relations:

(U) 〈ψ|ϕ〉 = 〈Fpreψ|Fpreϕ〉 (pre-unitary), and

(S)
R

R
ψ(x) · (Fpreϕ)(x) dx =

R

R
(Fpreψ)(x) · ϕ(x) dx (self-duality).

Relation (U) coincides with the Parseval equation (7.118), whereas relation (S)
follows from interchanging integration. Explicitly,

Z

R

ψ(x)

„

Z

R

e−ikxϕ(k)dk

«

dx =

Z

R

ϕ(k)

„

Z

R

e−ikxψ(x)dx

«

dk.

Finally, use the replacement k ⇔ x.
The Gelfand triplet. It is crucial to leave the Hilbert space L2(R) and to use

the extension S ′(R) of L2(R) by considering the functions in L2(R) as tempered
distributions. To this end, we introduce the Gelfand triplet (also called the rigged
Hilbert space L2(R)):

S(R) ⊆ L2(R) ⊆ S ′(R).

The elements of L2(R) (resp. S ′(R)) are called states (resp. costates). Recall that
the inner product on the complex separable Hilbert space L2(R) is given by

〈ψ|ϕ〉 =

Z

R

ψ(x)†ϕ(x)dx for all ϕ, ψ ∈ L2(R).

The linear space S(R) of test functions is dense in L2(R). For any given function
ψ ∈ L2(R), we define

Tψ(ϕ) :=

Z

R

ψ(x)ϕ(x)dx for all ϕ ∈ S(R).

Then, Tψ is a tempered distribution. The map ψ �→ Tψ is an injective map from
L2(R) into S ′(R). Therefore, we may identify ψ with Tψ. This will frequently be
done in the future, by using the symbol ψ instead of Tψ. In addition, if ψ ∈ L2(R),
then we define the costate 〈ψ| by setting

〈ψ|(ϕ) :=

Z

R

ψ(x)†ϕ(x)dx for all ϕ ∈ S(R).

Here, the costate 〈ψ| is a tempered distribution. Obviously, 〈ψ|(ϕ) = 〈ψ|ϕ〉. Finally,
for k ∈ R, let us define the costate 〈k| by setting

〈k|(ϕ) :=

Z

R

χ†
k(x)ϕ(x)dx for all ϕ ∈ S(R).

Motivated by the Dirac calculus, we will write 〈k|ϕ〉 instead of 〈k|(ϕ). Let ϕ ∈ S(R).
The relation to the Fourier transform is given by

〈k|ϕ〉 = ϕ̂(k) for all k ∈ R.
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The extended Fourier transform. Recall that Fpreϕ := ϕ̂ for all test func-
tions ϕ ∈ S(R). For any tempered distribution T ∈ S ′(R), define

(Fd
preT )(ϕ) := T (Fpreϕ) for all ϕ ∈ S(R).

The operator Fd
pre : S ′(R) → S ′(R) is linear and bijective. Next we want to show

that

Fd
preψ = Fpreψ for all ψ ∈ S(R). (7.119)

Hence Fpre ⊆ Fd
pre. For the proof, fix ψ ∈ S(R). By the self-duality of the Fourier

transform considered on page 513,

Fd
preTψ = TFpreψ.

Thus, identifying ψ with Tψ, we get the claim (7.119). Our key definition reads as

Fψ := Fd
preψ for all ψ ∈ L2(R).

In other words, the operator F is the restriction of the operator Fd
rm to the Hilbert

space L2(R). The Plancherel theorem tells us that the operator

F : L2(R) → L2(R)

is unitary. That is, we have the Parseval equation 〈Fψ|Fϕ〉 = 〈ψ|ϕ〉 for all functions
ψ, ϕ ∈ L2(R). Explicitly,

(Fψ)(k) = lim
R→+∞

1√
2π

Z R

−R

e−ikxψ(x)dx for all k ∈ R.

The convergence is to be understood in the sense of the Hilbert space L2(R).
Simplifying notation. Motivated by Fpre ⊆ F ⊆ Fd

pre, we write F instead of

Fd
pre (and Fpre). This way, we get the extended Fourier transform

F : S ′(R) → S ′(R)

with (FT )(ϕ) = T (Fϕ) for all T ∈ S ′(R) and all ϕ ∈ S(R).
The Sobolev space W m

2 (R). Let m = 1, 2, . . . By definition,

W m
2 (R) := {ϕ ∈ L2(R) : ϕ(j) ∈ L2(R), j = 1, . . . , m}. (7.120)

Here, the function ϕ and its jth derivatives ϕ(j), j = 1, 2, . . . , are to be understood
in the sense of tempered distributions (see (7.121)). Thus, W m

2 (R) ⊆ S ′(R). The
space W m

2 (R) becomes a complex separable Hilbert space equipped with the inner
product

〈ψ|ϕ〉 :=
m
X

j=0

Z

R

ψ(j)(x)†ϕ(j)(x)dx.

In 1936, spaces of this type were introduced by Sobolev (1885–1967) in order to
study singular solutions of wave equations. The Fourier transform allows the fol-
lowing useful characterization of Sobolev spaces. Let m = 1, 2, . . .

Proposition 7.26 ψ ∈ W m
2 (R) iff ψ ∈ L2(R) and

R

R
|k|2m|ψ̂(k)|2dp < ∞.
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Costates and Dual Operators

The theory of distributions is based on duality. Costates are dual states.
Folklore

Our goal is to construct eigencostates for the following observables: position, mo-
mentum, and energy of a free particle. The following investigations serve as prepa-
ration for this. Fix the state ψ ∈ L2(R). There are two possibilities for assigning a
costate to ψ, namely,

• Tψ (i.e., Tψ(ϕ) :=
R

R
ψ(x)ϕ(x)dx) for all ϕ ∈ S(R)) , and

• Tψ† (i.e., Tψ†(ϕ) :=
R

R
ψ(x)†ϕ(x)dx for all ϕ ∈ S(R)).

The map ψ �→ Tψ (resp. ψ �→ Tψ†) is injective and linear (resp. antilinear). Accord-
ing to Dirac, we set

〈ψ| := Tψ† .

Moreover, we write |ψ〉 instead of ψ. In particular, for all ϕ ∈ S(R),

〈ψ|(ϕ) = Tψ†(ϕ) =

Z

R

ψ(x)†ϕ(x)dx = 〈ψ|ϕ〉.

Dual operators. In what follows, duality plays the crucial role. Let us assume
that

(H) The linear operator A : S(R) → S(R) is sequentially continuous.

This means that limn→∞ ϕn = ϕ in S(R) implies limn→∞ Aϕn = Aϕ in S(R) (see
Vol. I, p. 537). We want to construct the dual operator

Ad : S ′(R) → S ′(R).

To this end, choose T ∈ S ′(R), and define

(AdT )(ϕ) := T (Aϕ) for all ϕ ∈ R.

Then AdT ∈ S ′(R). In fact, limn→∞ ϕn = ϕ in S(R) implies

lim
n→∞

(AdT )(ϕn) = lim
n→∞

T (Aϕn) = T ( lim
n→∞

Aϕn) = T (Aϕ) = (AdT )(ϕ).

Obviously, the operator Ad is linear.
Formally self-adjoint operators and pre-observables. Suppose that there

exists a formally adjoint operator A† : S(R) → S(R) to the operator A from (H)
above (see Problem 7.4). Then

Ad〈ψ| = 〈A†ψ| for all ψ ∈ S(R).

Indeed, for all ϕ ∈ S(R), we obtain

(Ad〈ψ|)(ϕ) = 〈ψ|(Aϕ) = 〈ψ|Aϕ〉 = 〈A†ψ|ϕ〉 = 〈A†ψ|(ϕ).

In particular, if the operator A is formally self-adjoint (i.e., A = A†), then we obtain
Ad〈ψ| = 〈Aψ| for all ψ ∈ S(R).

Self-dual operators and the Fourier transform. The operator A from (H)
above is called self-dual iff
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Z

R

ψ(x) · (Aϕ)(x)dx =

Z

R

(Aψ)(x) · ϕ(x)dx for all ϕ, ψ ∈ S(R).

Then (AdTψ) = TAψ for all ψ ∈ S(R). Identifying ψ with Tψ, we obtain

Adψ = Aψ for all ψ ∈ S(R).

Hence A ⊆ Ad. To simplify notation, we frequently denote the dual operator Ad by
the symbol

A : S ′(R) → S ′(R),

and we regard this as an extension of the operator A : S(R) → S(R). A typical
example is the Fourier transform considered on page 512.

Antiself-dual operators and the derivative operator. The operator A
from (H) above is called antiself-dual iff

Z

R

ψ(x) · (Aϕ)(x)dx = −
Z

R

(Aψ)(x) · ϕ(x)dx for all ϕ, ψ ∈ S(R).

Then −AdTψ = TAψ for all ψ ∈ S(R). Identifying ψ with Tψ, we obtain

−Adψ = Aψ for all ψ ∈ S(R).

Hence A ⊆ (−Ad). To simplify notation, we frequently denote the operator −Ad

by the symbol
A : S ′(R) → S ′(R),

and we regard this as an extension of A : S(R) → S(R). As a typical example, let
us consider the derivative operator A := d

dx
. Integration by parts shows that this

operator is antiself-dual.80 This way, we obtain the extension

d

dx
: S ′(R) → S ′(R).

Let T ∈ S ′(R). Then ( d
dx

T )(ϕ) = T (− dϕ
dx

) for all ϕ ∈ S(R). This is the usual
definition of the derivative of a tempered distribution. More generally, let T ∈ S ′(R).
The nth derivative of T is defined by

„

dnT

dxn

«

(ϕ) := (−1)nT

„

dnϕ

dxn

«

, n = 1, 2, . . . (7.121)

for all test functions ϕ ∈ S(R). This definition is based on the fact that the operator
dn

dxn : S(R) → S(R) is self-dual (resp. antiself-dual) if n is even (resp odd).

Each tempered distribution has derivatives of arbitrary order, which are
again tempered distributions.

80 For n = 1, 2, . . . and all ϕ, ψ ∈ S(R), integration by parts yields

Z

R

dnψ(x)

dxn
ϕ(x) dx = (−1)n

Z

R

ψ(x)
dnϕ(x)

dxn
dx.
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Eigencostates

For quantum mechanics, it is crucial to replace eigenvectors by eigen-
costates.

Folklore

Let A : S(R) → S(R) be a linear operator, and let {Tγ}γ∈Γ be a system of nonzero
tempered distributions Tγ ∈ S ′(R) with

AdTγ = λγTγ for all γ ∈ Γ, (7.122)

where λγ ∈ C for all γ ∈ Γ. Explicitly, this means that

Tγ(Aϕ) = λγT (ϕ) for all ϕ ∈ S(R), γ ∈ Γ.

Then all the distributions Tγ are called eigencostates (or generalized eigenfunctions)
of the operator A. The system {Tγ} is called complete iff, for any given test function
ϕ ∈ S(R),

Tγ(ϕ) = 0 for all γ ∈ Γ implies ϕ = 0.

In addition, if there exists a measure μ on the index set Γ with the generalized
Parseval equation

Z

R

ψ(x)†ϕ(x)dx =

Z

Γ

Tγ(ψ)†Tγ(ϕ) dμ(γ) (7.123)

for all ϕ, ψ ∈ S(R), then the system {Tγ}γ∈Γ is called a complete orthonormal
system of eigencostates of the operator A. Obviously, the latter property is stronger
than completeness. In fact, if Tγ(ϕ) = 0 for all γ, then 〈ϕ|ϕ〉 = 0, and hence ϕ = 0.
The complex numbers Tγ(ϕ) are called the generalized Fourier coefficients of the
test function ϕ ∈ S(R). The function

γ �→ Tγ(ϕ)

is called the generalized Fourier transform of the function ϕ ∈ S(R) with respect
to the operator A.

The Dirac calculus. It turns out that the Dirac calculus represents a very
elegant method in order to formulate quantum mechanics and quantum field theory
in a very elegant way. For ϕ ∈ S(R), we use the following notation:

• Tγ ⇒ 〈γ|,
• Tγ(ϕ) ⇒ 〈γ|ϕ〉, and
• 〈ϕ|γ〉 := 〈γ|ϕ〉†.
Then, the generalized Parseval equation (7.123) reads as

〈ψ|ϕ〉 =

Z

Γ

〈ψ|γ〉〈γ|ϕ〉 dμ(γ) for all ϕ, ψ ∈ S(R). (7.124)

Mnemonically, in order to obtain (7.124) we write 〈ψ|ϕ〉 = 〈ψ| · I · |ϕ〉 together with

I =

Z

Γ

|γ〉〈γ| dμ(γ).

This is Dirac’s formal completeness relation.
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The Position Operator

We want to study the following three operators Qpre ⊆ Q ⊆ Qd
pre.

• Let ϕ ∈ S(R). The pre-position operator Qpre : S(R) → S(R) is defined by
(Qpreϕ)(x) := xϕ(x) for all x ∈ R. The operator Qpre is formally self-adjoint and
self-dual. 81

• Let T ∈ S ′(R). The dual position operator Qd
pre : S ′(R) → S ′(R) is defined by

(Qd
preT )(ϕ) := T (Qpreϕ) for all ϕ ∈ S(R). This means that

(Qd
preT )(ϕ) := T (Qpreϕ) for all ϕ ∈ S(R).

• The operator Q : D(Q) → L2(R) is the restriction of Qd
pre to L2(R). Explicitly,

we set

D(Q) := {ϕ ∈ L2(R) :

Z

R

|xϕ(x)|2dx < ∞},

and (Qϕ)(x) := xϕ(x) for all x ∈ R and all ϕ ∈ D(Q).

The spectral family of the position operator. Fix λ ∈ R, and choose
ϕ ∈ L2(R). Define the operator Eλ : L2(R) → L2(R) by setting

(Eλϕ)(x) := eλ(x)ϕ(x) for all x ∈ R, (7.125)

where eλ is the characteristic function of the open interval ]−∞, λ[ (see (7.100) on
page 497).

Proposition 7.27 The operator family {Eλ}λ∈R is the spectral family of the self-
adjoint position operator Q : D(Q) → L2(R).

Proof. The self-adjointness of Q will be proved in Problem 7.15. For all functions
ϕ, ψ ∈ L2(R),

〈ψ|Eλϕ〉 =

Z ∞

−∞
ψ(x)†eλ(x)ϕ(x)dx =

Z λ

−∞
ψ(x)†ϕ(x)dx.

Hence d
dλ

〈ψ|Eλϕ〉 = ψ(λ)†ϕ(λ). This implies d〈ψ|Eλϕ〉 = ψ(λ)†ϕ(λ)dλ. Therefore,

〈ψ|Qϕ〉 =

Z ∞

−∞
ψ(x)†xϕ(x) =

Z ∞

−∞
λ · d〈ψ|Eλϕ〉.

Finally, one checks easily that the conditions (S1)–(S4) for a spectral family (for-
mulated on page 502) are satisfied. By the uniqueness statement from Corollary
7.20 on page 502, {Eλ}λ∈R is the spectral family of Q. �

Let the function f : R → C be measurable (e.g., piecewise continuous) and
bounded on all compact intervals. Define

D(f(Q)) := {ϕ ∈ L2(R) :

Z

R

|f(x)|2|ϕ(x)|2dx < ∞}.

81 In fact, for all ϕ, ψ ∈ S(R), we have
R

R
ψ(x)† · xϕ(x)dx =

R

R
(xψ(x))†ϕ(x)dx and

Z

R

ψ(x) · xϕ(x) dx =

Z

R

xψ(x) · ϕ(x) dx.
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For all ϕ ∈ D(f(Q)) and all ψ ∈ L2(R), set

〈ψ|f(Q)ϕ〉 :=

Z

R

f(λ) · d〈ψ|Eλϕ〉 =

Z

R

ψ(x)†f(x)ϕ(x)dx.

This way, we uniquely obtain the linear operator f(Q) : D(f(Q)) → L2(R). This
operator is self-adjoint (resp. continuous on L2(R)) if the function f is real-valued
(resp. bounded on R).

Measurement of position. Let ψ ∈ L2(R) with
R

R
|ψ(x)|2dx = 1. According

to the general approach, the spectral family of the observable Q uniquely determines
the measurements of Q in the normalized state ψ.

• Distribution function F: The probability of measuring the observable Q in the
open interval ] −∞, λ[ is given by

F(λ) := 〈ψ|Eλψ〉 =

Z λ

−∞
|ψ(x)|2dx.

This is the probability of measuring the position of the particle in the interval
] −∞, λ[.

• The probability for measuring the position of the particle in the interval [x0, x1]
is equal to

R

[x0,x1]
dF(λ) =

R x1
x0

|ψ(x)|2dx.

• Mean position of the particle: x̄ =
R

R
x dF(x) =

R

R
x|ψ(x)|2dx.

• Square of the position fluctuation:

(Δx)2 =

Z

R

(x − x̄)2 dF(x) =

Z

R

(x − x̄)2|ψ(x)|2dx.

The complete orthonormal system of eigencostates of the position
operator.

Proposition 7.28 (i) The operator Q : D(Q) → L2(R) has no eigenvectors in the
Hilbert space L2(R).

(ii) For the spectrum, σ(Q) = σess(Q) = ] −∞,∞[.
(iii) Xscatt = L2(R), and σac(Q) = σ(Q).

Proof. Ad (i). Suppose that Qψ = λψ, where ψ ∈ L2(R) and λ ∈ R. Then we
obtain (x − λ)ψ(x) = 0 for almost all x ∈ R. Hence ψ(x) = 0 for almost all x ∈ R.
Thus, ψ = 0 in L2(R).

Ad (ii). Use Theorem 7.22 on page 505 and (7.125).
Ad (iii). For any ϕ ∈ L2(R), the function λ �→ 〈ϕ|Eλϕ〉 is differentiable almost

everywhere on R, and the first derivative is integrable over R. Thus, ϕ ∈ Xscatt (see
page 503). �

Fix x ∈ R. Let us consider the Dirac delta distribution δx ∈ S ′(R) defined by
δx(ϕ) := ϕ(x) for all ϕ ∈ S(R).

Proposition 7.29 The system {δx}x∈R represents a complete orthonormal system
of eigencostates of the position operator Qpre.

Proof. Let ϕ, ψ ∈ S(R). For any parameter x ∈ R,

Qd
preδx = xδx.

In fact, δx(Qpreϕ) = xϕ(x) = xδx(ϕ). Furthermore, we have the generalized Parse-

val equation 〈ψ|ϕ〉 =
R

R
ψ(x)†ϕ(x)dx =

R

R
δx(ψ)†δx(ϕ)dx. �
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In the setting of the Dirac calculus, physicists write 〈x| instead of δx. Then

〈ψ|ϕ〉 =

Z

R

〈ψ|x〉〈x|ϕ〉 dx for all ϕ, ψ ∈ S(R).

Mnemonically, this remains true for all ψ, ϕ ∈ L2(R). Dirac’s formal completeness
relation reads as

I =

Z

R

|x〉〈x| dx.

The relation between eigencostates and the spectral family. Set

ψ0(x) := e−x2/2 for all x ∈ R.

Then ψ0 ∈ S(R). This function generates the (not normalized) Gaussian measure

μ(J) :=

Z

J

|ψ0(x)|2dx =

Z

J

e−x2
dx

for all intervals J on the real line. Fix λ ∈ R. For all test functions ϕ ∈ S(R), define

Tλ(ϕ) :=
d〈ψ0|Eλϕ〉
d〈ψ0|Eλψ0〉

.

Proposition 7.30 The family {Tx}x∈R of tempered distributions with

Tx =
δx

ψ0(x)

represents a complete orthonormal system of eigencostates of the position opera-
tor Qpre. Using the Gaussian measure dμ(x) = ψ0(x)2dx, we have the generalized
Parseval equation

Z

R

ψ(x)†ϕ(x)dx =

Z

R

Tx(ψ)†Tx(ϕ) dμ(x) for all ϕ, ψ ∈ S(R).

Proof. By the proof of Prop. 7.27, d〈ψ0|Eλϕ〉 = ψ0(λ)ϕ(λ)dλ. Hence

Tλ(ϕ) =
ψ0(λ)ϕ(λ)

ψ0(λ)2
=

ϕ(λ)

ψ0(λ)
.

Finally, use δx(ϕ) = ϕ(x). �

The square Q2 of the position operator. By von Neumann’s functional
calculus, the self-adjoint operator Q2 : D(Q2) → L2(R) has the domain of definition

D(Q2) = {ψ ∈ L2(R) :

Z

R

x4|ψ(x)|2dx < ∞}.

For λ ∈ R, we get (λI −Q2)ψ(x) = f(x). If λ < 0 and f ∈ L2(R) then the function

(λI − Q2)−1f(x) =
f(x)

λ − x2
, x ∈ R

is contained in L2(R). If λ ≥ 0, this is not the case for special choice of f. Hence
the spectrum of Q2 is equal to [0,∞[. Let us compute the spectral family of Q2.
For all ϕ, ψ ∈ L2(R),
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〈ψ|Q2ϕ〉 =

Z ∞

−∞
ψ(x)†x2ϕ(x)dx.

Setting λ = x2, we get 〈ψ|Q2ϕ〉 =
R∞
0

λ�ψ,ϕ(λ)dλ with the spectral density

�ψ,ϕ(λ) :=
1

2
√

λ

“

ψ(
√

λ)†ϕ(
√

λ) + ψ(−
√

λ)†ϕ(−
√

λ)
”

.

Thus, we get 〈ψ|Eλ0(Q
2)ϕ〉 =

R∞
0

eλ0(E)�ψ,ϕ(λ)dλ for all λ0 ∈ R. The definition
of the function eλ can be found in (7.100) on page 497. In particular, Eλ0 = 0 if
λ0 ≤ 0.

Proposition 7.31 (i) The operator Q2 has no eigenvectors in the Hilbert space
L2(R).

(ii) For the spectrum σ(Q2) = σess(Q
2) = σac(Q

2) = [0,∞[.

Proof. Ad (i). Use the same argument as for the operator Q above.
Ad (ii). Use the spectral family together with Theorem 7.22 on page 505. �

The Momentum Operator

We want to study the following three operators Ppre ⊆ P ⊆ (−P d
pre).

• Let ϕ ∈ S(R). The pre-momentum operator Ppre : S(R) → S(R) is defined by
(Ppreϕ)(x) := −i� d

dx
ϕ(x) for all x ∈ R. The operator Ppre is formally self-adjoint

and antiself-dual.82

• Let T ∈ S ′(R). The dual momentum operator P d
pre : S ′(R) → S ′(R) is defined by

(P d
preT )(ϕ) := T (Ppreϕ) for all ϕ ∈ S(R). In the sense of tempered distributions,

we have

P d
pre = i�

d

dx
.

This follows from i� dT
dx

(ϕ) = −i�T (ϕ′) = T (Ppreϕ) for all ϕ ∈ S(R).
• The operator P : D(P ) → L2(R) is the natural extension of the operator Ppre.

Explicitly, we set D(P ) := {ϕ ∈ L2(R) : ϕ′ ∈ L2(R)}, and

Pϕ := −i�
dϕ

dx
for all ϕ ∈ D(P ).

Here, the derivative is to be understood in the sense of tempered distributions.
In other words, D(P ) = W 1

2 (R).

The Fourier transform, and the duality between position and mo-
mentum. Choose χ := Ppreϕ where ϕ ∈ S(R). For the Fourier transform, we get
χ̂(k) = �kϕ̂(k) for all k ∈ R. Thus, the operator �

−1Ppre corresponds to the multi-
plication operator Qpre in the Fourier space. This means that the following diagram
is commutative:

82 In fact, for all ϕ, ψ ∈ S(R), we have
R

R
ψ†(x)(−iϕ′(x))dx =

R

R
(−iψ′(x))†ϕ(x)dx

and
Z

R

ψ(x)(−iϕ′(x))dx = −
Z

R

(−iψ′(x))ϕ(x)dx.
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S(R)

F
��

�
−1Ppre�� S(R)

F
��

S(R)
Qpre �� S(R).

Passing to the extended unitary Fourier transform F : L2(R) → L2(R), we obtain
the following commutative diagram:

D(P )

F
��

�
−1P �� L2(R)

F
��

D(Q)
Q �� L2(R).

Since the operator Q : D(Q) → L2(R) is self-adjoint and the property of self-
adjointness is invariant under unitary transformations, the position operator P :
D(P ) → L2(R) is self-adjoint (see Problem 7.14).

The spectral family of the wave number operator. Recall that the
momentum p corresponds to the wave number k = �

−1p. Therefore, the oper-
ator K := �

−1P is called the wave number operator. Since the spectral family
of a self-adjoint operator is invariant under unitary transformations, we obtain
the spectral family {Eλ}λ∈R of the wave number operator K from the spectral
family {Eλ(Q)}λ∈R of the position operator Q in the Fourier space. Explicitly,
Eλ = F−1Eλ(Q)F for all λ ∈ R. This means that, for all functions ϕ, ψ ∈ L2(R)
and all real numbers λ, we get

〈ψ|Eλϕ〉 =

Z λ

−∞
ψ̂(k)†ϕ̂(k)dk.

Proposition 7.32 The operator family {Eλ}λ∈R is the spectral family of the self-
adjoint wave number operator �

−1P : D(P ) → L2(R).

Let the function f : R → C be measurable (e.g., piecewise continuous) and bounded
on all compact intervals. Define

D(f(K)) := {ϕ ∈ L2(R) :

Z

R

|f(k)|2|ϕ̂(k)|2dk < ∞}.

For all ϕ ∈ D(f(K)) and all ψ ∈ L2(R), set

〈ψ|f(K)ϕ〉 :=

Z

R

f(λ) · d〈ψ|Eλϕ〉 =

Z

R

f(k)ψ̂(k)†ϕ̂(k)dk.

This way, we obtain the linear operator f(K) : D(f(K)) → L2(R). This operator
is self-adjoint (resp. continuous on L2(R)) if the function f is real-valued (resp.
bounded on R).

Measurement of the wave number. Let ψ ∈ L2(R) with the normalization
condition

R

R
|ψ(x)|2dx = 1. According to the general approach, the spectral family

of the observable K = �
−1P uniquely determines the measurements of the wave

number k = �
−1p in the normalized state ψ.



7.6 Von Neumann’s Rigorous Approach 523

• Distribution function F: The probability of measuring the wave number observ-
able K in the open interval ] −∞, λ[ is given by

F(λ) := 〈ψ|Eλψ〉 =

Z λ

−∞
|ψ̂(k)|2dk.

This is the probability of measuring the wave number k = �
−1p of the particle

in the open interval ] −∞, λ[.
• The probability of measuring the wave number of the particle in the interval

[k0, k1] is equal to
Z

[k0,k1]

dF(k) =

Z k1

k0

|ψ̂(k)|2dk.

• Mean wave number of the particle: k̄ =
R

R
k dF(k) =

R

R
k|ψ̂(k)|2dk.

• Square of the wave number fluctuation:

(Δk)2 =

Z

R

(k − k̄)2 dF(k) =

Z

R

(k − k̄)2|ψ̂(k)|2dk.

Moreover, we get the mean momentum p̄ = �k̄ and the mean momentum fluctuation
Δp = �Δk.

The complete orthonormal system of eigencostates of the momentum
operator.

Proposition 7.33 (i) The operator P : D(P ) → L2(R) has no eigenvectors in the
Hilbert space L2(R).

(ii) For the spectrum, σ(P ) = σess(P ) = ] −∞,∞[.
(iii) Xscatt = L2(R), and σac(P ) = σ(P ).

This follows from Prop. 7.28 on page 519 and from the fact that the wave number
operator �

−1P is unitarily equivalent to the position operator Q.

Proposition 7.34 The system {〈k|}k∈R represents a complete orthonormal system
of eigencostates of the momentum operator Ppre.

Proof. Let ϕ, ψ ∈ S(R). For any parameter k ∈ R,

P d
pre〈k| = �k 〈k|.

In fact, using Ppreχk = �kχk, we get

〈k|Ppreϕ〉 =

Z

R

χ†
kPpreϕ dx =

Z

R

(Ppreχk)†ϕdx = �k

Z

R

χ†
kϕdx = �k 〈k|ϕ〉.

Furthermore, we have the generalized Parseval equation

〈ψ|ϕ〉 =

Z

R

ψ̂(k)†ϕ̂(k)dk =

Z

R

〈ψ|k〉〈k|ϕ〉 dk.

Thus, 〈k|ϕ〉 = 0 for all k ∈ R implies 〈ϕ|ϕ〉 = 0, and hence ϕ = 0. �

Dirac’s formal completeness relation reads as

I =

Z

R

|k〉〈k| dk.
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The relation between eigencostates and the spectral family. Set

ψ0(x) :=
√

� e−x2
�
2/2 for all x ∈ R.

Then ψ0 ∈ S(R), and ψ̂0(k) = e−k2/2. This function generates the (not normalized)
Gaussian measure

μ(J) :=

Z

J

ψ̂0(k)2dk =

Z

J

e−k2
dk

for all intervals J on the real line. Fix λ ∈ R. For all test functions ϕ ∈ S(R), define

Tλ(ϕ) :=
d〈ψ0|Eλϕ〉
d〈ψ0|Eλψ0〉

.

Proposition 7.35 The family {Tk}k∈R of tempered distributions with

Tk =
〈k|

ψ̂0(k)

represents a complete orthonormal system of eigencostates of the wave number op-
erator �

−1Ppre. Using the Gaussian measure dμ(k) = |ψ0(k)|2dk, we have the gen-
eralized Parseval equation

Z

R

ψ(x)†ϕ(x)dx =

Z

R

Tk(ψ)†Tk(ϕ) dμ(k) for all ϕ, ψ ∈ S(R).

Proof. By the proof of Prop. 7.34, d〈ψ0|Eλϕ〉 = ψ̂0(λ)ϕ̂(λ)dλ. Hence

Tλ(ϕ) =
ψ̂0(λ)ϕ̂(λ)

ψ̂0(λ)2
=

ϕ̂(λ)

ψ̂0(λ)
.

Finally, use the Parseval equation for the Fourier transform. �

7.6.5 The Free Hamiltonian

The free Hamiltonian is a paradigm for general Hamiltonians in quantum
mechanics and quantum field theory.

Folklore

The functional-analytic approach to quantum dynamics is based on the study of the
energy operator (also called the Hamiltonian). In this section, we want to investigate
thoroughly the Hamiltonian Hfree of the free quantum particle on the real line, which
is called the free Hamiltonian. The two key operator equations are the instationary
Schrödinger equation

i�ψ̇(t) = Hfreeψ(t), t > t0, ψ(t0) = ψ0 (7.126)

with the solution ψ(t) = e−i(t−t0)Hfree/�ψ0 (the Feynman propagator) and the in-
homogeneous stationary Schrödinger equation

Hfreeϕ = Eϕ + f (7.127)

with the solution ϕ = (Hfree − EI)−1f (the energetic Green’s operator). Here, we
have to assume that the complex energy E is not contained in the spectrum σ(Hfree)
of the free Hamiltonian. We will show that:
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• The Feynman propagator kernel K describes the solution of the initial-value
problem for the instationary Schrödinger equation (7.126),

i�ψt(x, t) = − �
2

2m
ψxx(x, t), ψ(t0, x) = ψ0(x),

by means of the integral formula

ψ(x, t) =

Z

R

K(x, t; x0, t0)ψ0(x0)dx0, t > t0, x ∈ R.

• The energetic Green’s function G describes the solution of the inhomogeneous
stationary Schrödinger equation (7.126),

− �
2

2m
ϕ′′(x) = Eϕ(x) + f(x), x ∈ R, E ∈ C,

by means of the integral formula

ϕ(x) =

Z

R

G(x, x0; E)f(x0)dx0, x ∈ R, E ∈ C \ σ(Hfree)

where σ(Hfree) = [0,∞[.

The energetic Green’s function carries the information on the energy spectrum of
the particle.

The Feynman propagator kernel K and the energetic Green’s function G
are related to each other by the Laplace transform.

This corresponds to

• the duality between energy and time, and
• the duality between causality and analyticity,

which is crucial for both quantum mechanics and quantum field theory.
Using the results on the momentum operators Ppre ⊆ P ⊆ P d

pre obtained on

page 521, we want to study the energy operators Hpre ⊆ Hfree ⊆ Hd
pre.

• The pre-Hamiltonian Hpre : S(R) → S(R) is defined by

Hpre :=
P 2

pre

2m
.

Explicitly, Hpreϕ = − �
2

2m
ϕ′′ for all ϕ ∈ S(R). The operator Hpre is formally

self-adjoint and self-dual.

• The operator Hd
pre : S ′(R) → S ′(R) is defined by Hd

pre :=
(P d

pre)
2

2m
. For any

tempered distribution T ∈ S ′(R),

Hd
preT = − �

2m

d2T

dx2
.

• By von Neumann’s functional calculus, the operator P 2 : D(P 2) → L2(R) is

self-adjoint, and D(P 2) = {ψ ∈ L2(R) :
R

R
|k2ψ̂(k)|2dk < ∞}. By Prop. 7.26,

D(P 2) = W 2
2 (R).

• We define the self-adjoint free Hamiltonian Hfree : D(Hfree) → L2(R) by setting

Hfree := P2

2m
. Hence D(Hfree) = W 2

2 (R).
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Eigencostates. Recall that 〈k|ϕ〉 = ϕ̂(k) for all ϕ ∈ S(R), where ϕ̂ is the
Fourier transform of ϕ. Moreover, following Dirac, we set 〈ϕ|k〉 := 〈k|ϕ〉†. Recall

that Ek := �
2k2

2m
is the energy of a classical free particle on the real line which has

the momentum p = �k.

Proposition 7.36 The system {〈k|}k∈R is a complete orthonormal system of
eigencostates of the energy operator Hpre. Explicitly,

(a) Hd
pre〈k| = Ek〈k| for all wave numbers k ∈ R.

(b) 〈ψ|ϕ〉 =
R

R
〈ψ|k〉〈k|ϕ〉 dk for all ψ, ϕ ∈ L2(R).

Proof. Since P d
pre〈k| = �k〈k|, we get Hd

pre〈k| =
(P d

pre)
2

2m
〈k| = (�k)2

2m
〈k|. This is (a).

Claim (b) coincides with the Parseval equation for the Fourier transform.
�

In terms of distribution theory, the costate 〈k| corresponds to the function

χ†
k(x) = e−ikx

√
2π

for all x ∈ R. Passing from k to −k, claim (a) is equivalent to

− �
2

2m

d2χk

dx2
=

�
2k2

2m
· χk for all k ∈ R.

The elements of the Hilbert space L2(R) correspond to states of a single particle.
The function χk is not a state, but it describes a particle stream, as discussed on
page 512.

The spectrum of the free Hamiltonian Hfree acting in the Hilbert
space X of states. We have Xscatt = L2(R) and

σ(Hfree) = σac(Hfree) = σess(Hfree) = [0, +∞[.

That is, the spectrum of the free Hamiltonian Hfree contains all the energy values
E ≥ 0. The spectrum coincides with both the absolutely continuous spectrum and
the essential spectrum. The pure point spectrum is empty, that is, there is no state
of the free quantum particle on the real line which has a sharp energy. In other
words, there are no bound states. In addition, the singular spectrum is empty. The
resolvent set of the operator Hfree is given by �(Hfree) = C \ [0, +∞[.

The proof follows from the corresponding properties of the operator Q2 and the
fact that the operator �

−2P 2 is unitarily equivalent to Q2, by Fourier transform
(see page 520).

The quantum dynamics: We will use Theorem 7.23 together with the Stone
theorem on page 505ff. Set P (t, t0) := e−i(t−t0)Hfree/� . For all times t, t0 ∈ R, the
operator

P (t, t0) : L2(R) → L2(R)

is unitary. For each given initial state ψ0 ∈ L2(R) at time t0, we set

ψ(t) := P (t, t0)ψ0, t ∈ R.

The function t �→ ψ(t) describes the motion of the free quantum particle on the
real line with the initial condition ψ(t0) = ψ0. If ψ0 ∈ D(Hfree) (e.g., we choose
ψ0 ∈ S(R)), then the function ψ : [0,∞[→ L2(R) is continuously differentiable, and
we have the Schrödinger equation

i�ψ̇(t) = Hfreeψ(t), t ∈ R, ψ(t0) = ψ0.
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The operator P (t, t0) is called the propagator of the free quantum particle at time
t (with respect to the initial time t0). In terms of the unitary Fourier transform
F : L2(R) → L2(R), the propagator P (t, t0) corresponds to the multiplication

with the function k �→ e−i(t−t0)Ek/� in the Fourier space. This means that, for all
ψ0 ∈ L2(R), we get

P (t, t0)ψ0 = F−1MFψ0, t, t0 ∈ R

with the multiplication operator (Mψ̂0)(k) := e−i(t−t0)Ek/�ψ̂0(k) for all wave num-
bers k ∈ R.

The spectral measure of the free Hamiltonian Hfree. Let the function
F : [0,∞[→ C be continuous (or piecewise continuous) and bounded. Then, for all
χ, ϕ ∈ S(R),

〈χ|F(Hfree)ϕ〉 =

Z ∞

0

F (E) �χ,ϕ(E)dE (7.128)

with the smooth density function

�χ,ϕ(E) :=

r

m

2�2E

“

χ̂(k)†ϕ̂(k) + χ̂(−k)†ϕ̂(−k)
”

, E > 0.

Here, k :=
√

2mE/�. Moreover, χ̂ (resp. ϕ̂) is the Fourier transform of χ (resp.
ϕ) from (7.116). Formula (7.128) can be uniquely extended to all χ, ϕ ∈ L2(R).
The operator F(Hfree) : X → X is linear and continuous. Formula (7.128) remains
valid if we replace the function F by its complex-conjugate function F † and the
operator F(Hfree) by its adjoint operator F(Hfree)

†, respectively. If the function F
is real-valued, then the operator F(Hfree) is self-adjoint. Furthermore,

〈χ|Hfreeϕ〉 =

Z ∞

0

E�χ,ϕ(E)dE for all χ, ϕ ∈ S(R).

Proof. We have 〈χ|F(H)ϕ〉 =
R∞
−∞ F

“

�
2k2

2m

”

χ̂†(k)ϕ̂(k)dk. This is equal to

Z ∞

0

F

„

�
2k2

2m

«

“

χ̂†(k)ϕ̂(k) + χ̂†(−k)ϕ̂(−k)
”

dk =

Z ∞

0

F (E)�χ,ϕ(E)dE.

�

The spectral family of the free Hamiltonian Hfree. Let λ ∈ R. Choosing
the characteristic function eλ of the interval ]−∞, λ[ (see (7.100) on page 497), we
get

〈χ|Eλ(Hfree)ϕ〉 =

Z ∞

0

eλ(E)�χ,ϕ(E)dE for all χ, ϕ ∈ S(R).

In particular, if λ ≤ 0, then Eλ(Hfree) = 0.
Measurements of the energy. Let ϕ ∈ S(R) be a normalized state in the

Hilbert space L2(R) (i.e.,
R

R
|ϕ(x)|2dx = 1). This state describes a free quantum

particle on the real line. Let 0 ≤ E0 < E1 ≤ ∞. Then:

• Probability of measuring the energy of the particle in the interval[E0, E1] :
Z E1

E0

�ϕ,ϕ(E)dE.

• Mean energy of the particle: Ē =
R∞
0

E�ϕ,ϕ(E)dE.

• Square of the energy fluctuation: (ΔE)2 =
R∞
0

(E − Ē)2�ϕ,ϕ(E)dE.
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The Feynman Propagator Kernel

For all positions x, x0 ∈ R and times t > t0, define

K(x, t; x0, t0) :=

r

m

2πi�(t − t0)
· eim(x−x0)2/2�(t−t0).

Let ψ0 ∈ S(R). Then we have the following integral representation of the quantum
dynamics:

`

P (t, t0)ψ0

´

(x) =

Z

R

K(x, t; x0, t0)ψ0(x0)dx0, x ∈ R, t > t0.

This is the key formula for solving the initial-value problem for the instationary
Schrödinger equation (7.126) on page 524. For all χ, ϕ ∈ S(R), we obtain the kernel
formula

〈χ|P (t − t0)ϕ〉 =

Z

R2
χ(x)†K(x, t; x0, t0)ϕ(x0)dxdx0, t > t0.

For t > t0, the function (x, y) �→ K(x, t; y, t0) is called the Feynman propagator
kernel of the free quantum particle.

The Euclidean Propagator Kernel

Set PEuclid(t, t0) := e−(t−t0)Hfree/� . The operator

PEuclid(t, t0) : L2(R) → L2(R), t ≥ t0

is linear, continuous, and nonexpansive, that is, ||PEuclid(t, t0)|| ≤ 1 for all t ≥ t0.
For each given initial state ψ0 ∈ L2(R) at time t0, we set

ψ(t) := PEuclid(t, t0)ψ0, t ≥ t0.

If ψ0 ∈ S(R), then the function ψ : [0,∞[→ L2(R) is continuously differentiable,
and we have the Euclidean Schrödinger equation

�ψ̇(t) = −Hfreeψ(t), t > t0, ψ(t0) = ψ0. (7.129)

The operator PEuclid(t, t0) is called the Euclidean propagator of the free quantum
particle at time t (with respect to the initial time t0). In terms of the unitary Fourier
transform F : L2(R) → L2(R), the Euclidean propagator P (t, t0) corresponds to

the multiplication with the function k �→ e−(t−t0)Ek/� in the Fourier space. This
means that, for all initial states ψ0 ∈ L2(R), we get

PEuclid(t, t0)ψ0 = F−1MFψ0, t ≥ t0

with the multiplication operator (Mψ̂0)(k) := e−(t−t0)Ek/�ψ̂0(k) for all k ∈ R. For
all positions x, x0 ∈ R and all times t > t0, define

P(x, t; x0, t0) =

r

m

2π�(t − t0)
· e−m(x−x0)2/2�(t−t0).

Then we have the following integral representation:
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`

PEuclid(t, t0)ψ0

´

(x) =

Z

R

P(x, t; x0, t0)ψ0(x0)dx0, x ∈ R, t > t0.

This is the key formula for solving the initial-value problem for the Euclidean
Schrödinger equation (7.129). For all χ, ϕ ∈ L2(R), we obtain the kernel formula

〈χ|PEuclid(t, t0)ϕ〉 =

Z

R2
χ(x)†P(x, t; x0, t0)ϕ(x0)dxdx0, t > t0.

For t > t0, the function (x, x0) �→ P(x, t; x0, t0) is called the Euclidean propagator
kernel of the free quantum particle.

The Energetic Green’s Function

The inhomogeneous stationary Schrödinger equation. Consider the inho-
mogeneous equation.

− �
2

2m
ϕ′′(x) = Eϕ(x) + f(x), x ∈ R, (7.130)

which passes over to the stationary Schrödinger equation (7.115) if f(x) ≡ 0. Equa-
tion (7.130) corresponds to the operator equation

Hfreeϕ − Eϕ = f, ϕ ∈ D(Hfree). (7.131)

We want to solve this equation. Let E ∈ �(Hfree) (i.e., E ∈ C \ [0,∞[). Then the
resolvent

(EI − Hfree)
−1 : L2(R) → L2(R)

exists as a linear continuous operator. For given f ∈ L2(R), the equation (7.131)
has the unique solution

ϕ = (Hfree − EI)−1f.

Von Neumann’s operator calculus tells us that for all χ, f ∈ L2(R), we have

〈χ|(Hfree − EI)−1f〉 =

Z ∞

0

�χ,f (E)

E − E dE.

The retarded Green’s function. Our goal is to represent the solution of the
inhomogeneous Schrödinger equation (7.130) by an integral formula. To this end,
we introduce the function

G+(x, y; E) :=
im · eik|x−y|

�2k
, x, y ∈ R. (7.132)

Here, k :=
√

2mE/�. We assume that �(E) > 0. The square root is to be understood
as principal value. This choice of the complex energy E guarantees that the function
G+ decays exponentially as |x − y| → ∞.

Proposition 7.37 Let �(E) > 0. For given f ∈ S(R), the unique solution of the
inhomogeneous Schrödinger equation (7.130) reads as

ϕ(x) =

Z

R

G+(x, y; E)f(y)dy, x ∈ R. (7.133)
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The proof will be given in Sect. 8.5.2 on page 731. By Prop. 7.37, we get

〈χ|(Hfree − EI)−1ϕ〉 =

Z

R2
χ(x)†G+(x, y; E)ϕ(y)dxdy, �(E) > 0

for all χ, ϕ ∈ S(R). Therefore the function (x, y) �→ G+(x, y; E) is the kernel of the
(negative) resolvent (Hfree − EI)−1; this kernel is called the retarded (energetic)
Green’s function of the Hamiltonian Hfree. Note that, for fixed y ∈ R, the retarded
Green’s function behaves like

• eikx as x → +∞, and
• e−ikx as x → −∞ where k > 0.

This corresponds to outgoing waves at infinity, x = ±∞.

The advanced Green’s function. Now we pass from the positive wave num-
ber k to the negative wave number −k, that is, we change outgoing waves into
ingoing waves at infinity. To this end, define

G−(x, y; E) := − im · e−ik|x−y|

�2k
, x, y ∈ R. (7.134)

Here, k := −
√

2mE/�. We assume that �(E) < 0. The square root is to be under-
stood as principal value. This choice of the complex energy E guarantees that the
function G− decays exponentially as |x − y| → ∞.

Proposition 7.38 Let �(E) < 0. For given f ∈ S(R), the unique solution of the
inhomogeneous Schrödinger equation (7.130) reads as

ϕ(x) =

Z

R

G−(x, y; E)f(y)dy, x ∈ R.

Thus, for all χ, ϕ ∈ S(R) we obtain

〈χ|(Hfree − EI)−1ϕ〉 =

Z

R2
χ(x)†G−(x, y; E)ϕ(y)dxdy.

This means that the function (x, y) �→ G−(x, y; E) is the kernel of the (negative)
resolvent (Hfree − EI)−1; this kernel is called the advanced (energetic) Green’s
function of the Hamiltonian Hfree. Note that, for fixed y ∈ R, the advanced Green’s
function behaves like

• e−ikx as x → +∞ and
• eikx as x → −∞ where k > 0.

This corresponds to incoming waves at infinity, x = ±∞.

The Fourier–Laplace transform of the Feynman propagator kernel.
Fix the initial-time t0. Then, for all times t > t0, all positions x, y ∈ R, and all
complex energies E in the open upper half-pane (i.e., �(E) > 0), we have

G+(x, y; E) :=
i

�

Z ∞

t0

eiE(t−t0)/� K(x, t; y, t0) dt

together with the inverse formula

K(x, t; y, t0) =
1

2πi
· PV

Z ∞

−∞
e−iE(t−t0)/� G+(x, y; E) d�(E).
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The global energetic Green’s function. The retarded Green’s function
is holomorphic in the open upper half-plane. This function can be analytically
continued to a global analytic function on a double-sheeted Riemann surface. This
global Green’s function is given by

Gglobal(x, y; E) =
im · eik(E)|x−y|

�2k(E)

where k(E) :=
√

2m
�

·
√
E . Here, the function E �→ k(E) has to be regarded as

a global analytic function defined on the Riemann surface R of the square-root
function

√
: R → C. This Riemann surface will be studied in Sect. 8.3.5 on page

713. In terms of R, the retarded (resp. advanced) Green’s function is defined on
the open upper (resp. lower) half-plane of the first sheet of the Riemann surface R.
The two functions jump along the positive real axis (see Fig. 8.6 on page 714).

Perturbation of the Free Quantum Dynamics

If the motion of the free particle on the real line is perturbed by the potential U ,
then we get the perturbed Schrödinger equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + U(x)ψ(x, t), x ∈ R, t > t0, ψ(x, t0) = ψ0.

(7.135)

This is the prototype of a quantum system under interaction. Let us introduce the
Hamiltonian

Hϕ := − �
2

2m

d2ϕ

dx2
+ Uϕ for all ϕ ∈ W 2

2 (R).

In other words, H = Hfree + U.

Theorem 7.39 If the function U : R → R is smooth and has compact support,
then the Hamiltonian H : W 2

2 (R) → L2(R) is self-adjoint.

Proof. Let x ∈ R. Define the operator C : L2(R) → L2(R) by setting

(Cϕ)(x) := U(x)ϕ(x) for all ϕ ∈ L2(R).

Then ||Cϕ|| ≤ const · ||ϕ|| for all ϕ ∈ L2(R). In fact,

〈Uϕ|Uϕ〉 =

Z

R

ϕ(x)†U(x)2ϕ(x)dx ≤ const

Z

R

|ϕ(x)|2dx.

Since the operator Hfree : W 2
2 (R) → L2(R) is self-adjoint, it follows from the

Rellich–Kato perturbation theorem on page 502, that the perturbed operator
H = Hfree + C is also self-adjoint on W 2

2 (R). �

A detailed study of equation (7.135) can be found in Chap. 8. This concerns
the relation between scattering processes and bound states.
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The Beauty of Harmonic Analysis

The motion of a free quantum particle is governed by the Fourier transform. Let us
explain the relation to the translation group on the real line. For each a ∈ R, the
transformation

Tax := x + a for all x ∈ R

represents a translation of the real line. For each smooth function ψ : R → C, we
define the operator

(Taψ)(x) := ψ(T−1
a x).

Explicitly, Taψ(x) = ψ(x − a). The operator D defined by

Dψ(x) := lim
a→0

Taψ(x) − ψ(x)

a
= −ψ′(x) for all x ∈ R

is called the infinitesimal translation. By Taylor expansion,

Taψ(x) = ψ(x) + Dψ(x) + 1
2
D2ψ(x) + 1

3!
D3ψ(x) + . . .

The Fourier transform is related to the eigenfunctions χk(x) := eikx
√

2π
of the infinites-

imal operator D. Explicitly,

i�Dχk = �kχk, k ∈ R.

Note that i�D corresponds to the momentum operator on the real line. If we replace
the translation group by another Lie group, then we get a generalization of the
preceding situation which leads to

• more general infinitesimal transformations (differential operators),
• more general eigenfunctions (special functions of mathematical physics),
• and a generalization of the Fourier transform.

This is the subject of a beautiful branch in mathematics called harmonic analysis,
which will be encountered quite often in this treatise. In the 20th century, the
protagonist of harmonic analysis was Hermann Weyl (1885–1955). We recommend:

G. Mackey, The Scope and History of Commutative and Noncommutative
Harmonic Analysis, Amer. Math. Soc., Providence, Rhode Island, 1992.

G. Mackey, Induced Representations of Groups and Quantum Mechanics,
Benjamin, New York, 1968.

G. Mackey, Unitary Group Representations in Physics, Probability, and
Number Theory, Benjamin, Reading, Massachusetts, 1978.

7.6.6 The Rescaled Fourier Transform

The rescaled Fourier transform fits best the duality between position and
momentum of quantum particles in the setting of the Dirac calculus.

Folklore

Introducing the function ϕp(x) := eipx/�

√
2π�

for all x ∈ R, we obtain the key relation

−i�
dϕp

dx
= pϕp for all p ∈ R.

That is, the function ϕp is a generalized eigenfunction of the momentum operator
with the momentum p as eigenvalue. The normalization is dictated by the Parseval
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equation (7.138) below. Let ϕ, ψ ∈ S(R). The rescaled Fourier transform is given
by the following two formulas

ϕ̃(p) =

Z

R

ϕ†
p(x)ϕ(x)dx for all p ∈ R (7.136)

and

ϕ(x) =

Z

R

ϕp(x)ϕ̃(p)dp for all x ∈ R (7.137)

together with the Parseval equation
Z

R

ψ(x)†ϕ(x)dx =

Z

R

ψ̃(p)†ϕ̃(p) dp. (7.138)

The classical Fourier transform is obtained by choosing � := 1. Setting F�ϕ := ϕ̃,
we obtain the linear, bijective, sequentially continuous operator

F� : S(R) → S(R)

which is called the rescaled Fourier transform. As in Sect. 7.6.4, this operator can
be extended to a linear bijective operator

F� : S ′(R) → S ′(R)

such that the restriction F� : L2(R) → L2(R) is unitary. The commutative diagram

D(P )

F�

��

P �� L2(R)

F�

��
D(Q)

Q �� L2(R)

tells us that the momentum operator P and the position operator Q are unitar-
ily equivalent. According to Dirac, for fixed momentum p ∈ R, we introduce the
momentum costate 〈p| by setting

〈p|(ϕ) :=

Z

R

ϕ†
p(x)ϕ(x)dx, for all ϕ ∈ S(R).

Mnemonically, we write this as 〈p|ϕ〉. Replacing the wave number costate 〈k| from
Sect. 7.6.4 by the momentum costate 〈p|, we get the following formulas of the Dirac
calculus:

• 〈p|ϕ〉 = ϕ̃(p),
• I =

R

R
|p〉〈p| dp,

• P d
pre〈p| = p 〈p|,

• Hd
pre〈p| = E(p) 〈p| with the energy value E(p) := p2

2m
.

The system {〈p|}p∈R forms a complete orthonormal system of costates for both the
momentum operator Ppre and the free Hamiltonian Hpre. Adding the mnemonical
formulas

• 〈x|ϕ〉 = ϕ(x) and 〈x|p〉 = ϕp(x),
• I =

R

R
|x〉〈x| dx,



534 7. Quantization of the Harmonic Oscillator

as well as 〈a|b〉† = 〈b|a〉, we automatically obtain

〈p|ϕ〉 =

Z

R

〈p|x〉〈x|ϕ〉 dx, 〈x|ϕ〉 =

Z

R

〈x|p〉〈p|ϕ〉 dp

which is the rescaled Fourier transform (7.136), (7.137) above. Similarly, the Par-
seval equation (7.138) above is obtained by

〈ψ|ϕ〉 =

Z

R

〈ψ|x〉〈x|ϕ〉 dx =

Z

R

〈ψ|p〉〈p|ϕ〉 dp.

This shows that the rescaled Fourier transform is nothing else than a change from
the position coordinate x to the momentum coordinate p which respects “inner
products.”

Note that, as a rule, physicists use the wave number costates 〈k| in scattering
theory, and the momentum costates 〈p| in the Feynman path integral approach. We
will follow this convention.

7.6.7 The Quantized Harmonic Oscillator and the Maslov Index

The global behavior of the quantized harmonic oscillator is governed by
the Morse indices (also called Maslov indices) of the classical harmonic
oscillator.

Folklore

Let us continue the study of the quantized harmonic oscillator on the real line
started in Sect. 7.4.4 on page 467. The initial-value problem for the corresponding
Schrödinger equation reads as

i�ψt(x, t) = − �
2

2m
ψxx(x, t) +

mω2x2

2
ψ(x, t), ψ(x, t0) = ψ0(x) (7.139)

for all position coordinates x ∈ R and all times t > t0. Let us introduce the pre-
Hamiltonian Hpre : S(R) → S(R) by setting

`

Hpreϕ
´

(x) := − �
2

2m

d2ϕ(x)

dx2
+

mω2x2

2
ϕ(x), x ∈ R.

By Sect. 7.4.4, the equation Hpreϕ = Eϕ has the eigensolutions (ϕn, En) with the
energy eigenvalues En = �ω(n + 1

2
) and the eigenfunctions

ϕn(x) =
1

p

2nn!x0
√

π
Hn

„

x

x0

«

exp

(

−1

2

„

x

x0

«2
)

, n = 0, 1, 2, . . . ,

where x0 :=
q

�

mω
. Here, H0, H1, H2, . . . are the Hermite polynomials introduced

on page 436. Furthermore, ϕn ∈ S(R) for all n. We will use the Hilbert space L2(R)
with the inner product

〈χ|ϕ〉 :=

Z

R

χ†(x)ϕ(x)dx, χ, ϕ ∈ L2(R).

For introducing operator kernels, we will also use the Hilbert space L2(R
2) equipped

with the inner product

〈A|B〉L2(R2) :=

Z

R2
A(x, y)†B(x, y)dxdy, A,B ∈ L2(R

2).
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(i) The self-adjoint Hamiltonian H: The point is that the eigenfunctions ϕ0, ϕ1, . . .
form a complete orthonormal system in the Hilbert space. The pre-Hamiltonian
Hpre can be extended to the self-adjoint operator H : D(H) → L2(R) given by

Hϕ :=
∞
X

n=0

En〈ϕn|ϕ〉ϕn.

Here, ϕ ∈ D(H) iff this series is convergent in the Hilbert space L2(R), that
is,
P∞

n=0 E2
n|〈ϕn|ϕ〉|2 < ∞. The operator H is called the Hamiltonian of the

quantized harmonic oscillator.
(ii) The spectrum of the Hamiltonian H: The spectrum σ(H) consists of the energy

values E0, E1, E2, . . . of the quantized harmonic oscillator. This is a pure point
spectrum; the absolutely continuous spectrum, the essential spectrum, and the
singular spectrum of H are empty.

(iii) The kernel theorem: Let λ0, λ1, . . . be complex numbers. Consider the operator
A : D(A) → L2(R) given by

Aϕ =

∞
X

n=0

λn〈ϕn|ϕ〉ϕn. (7.140)

We assume that the domain of definition D(A) consists of all the functions
ϕ ∈ L2(R) for which the series on the right-hand side of (7.140) is convergent
in L2(R), that is, ϕ ∈ D(A) iff

P∞
k=0 |λn〈ϕn|ϕ〉|2 < ∞.

Theorem 7.40 (a) Hilbert–Schmidt operator with L2(R
2)-kernel: If

∞
X

n=0

|λn|2 < ∞,

then the operator A : X → X defined by (7.140) is linear, continuous, and
compact. The series

A(x, y) :=

∞
X

n=0

λnϕn(x)ϕn(y)†, (x, y) ∈ R
2 (7.141)

is convergent in the Hilbert space L2(R
2), and the operator A has the L2(R

2)-
kernel A. That is, for all ϕ, χ ∈ L2(R), we have

(Aϕ)(x) =

Z

R

A(x, y)ϕ(y)dy, x ∈ R,

together with the bilinear form

〈χ|Aϕ〉 =

Z

R2
χ(x)†A(x, y)ϕ(y)dxdy. (7.142)

If all the numbers λ0, λ1, . . . are real, then the operator A is self-adjoint.
(b) Trace-class operator: If

P∞
n=0 |λn| < ∞, then (i) is valid. The operator

A : L2(R) → L2(R) is called a trace class (or nuclear) operator; its trace is
given by tr(A) =

P∞
n=0 λn.83

83 The general definition of Hilbert–Schmidt operators and trace-class operators
will be given in Sect. 7.16.4 on page 629.
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(c) The Schwartz kernel T : If the condition supn |λn| < ∞ is satisfied, then
the operator A : X → X is linear and continuous. There exists a uniquely
determined tempered distribution T ∈ S ′(R2) such that

〈χ|Aϕ〉 = T (χ† ⊗ ϕ) for all χ, ϕ ∈ S(R).

More precisely, there exist a continuous function A : R
2 → C of polynomial

growth and nonnegative integers r and s such that

T (χ† ⊗ ϕ) =

Z

R2
χ(r)(x)†A(x, y)ϕ(s)(y)dxdy for all χ, ϕ ∈ S(R).

Proof. Ad (a). Since the functions ϕ0, ϕ1, . . . form a complete orthonormal
system in the Hilbert space L2(R), the tensor products

(ϕ†
k ⊗ ϕl)(x, y) := ϕk(x)†ϕ(y), (x, y) ∈ R

2, k, l = 0, 1, . . .

represent a complete orthonormal system in the Hilbert space L2(R
2) (see Zei-

dler (1995a), p. 224). Consequently, the series (7.141) is convergent in L2(R
2)

iff
P∞

n=0 |λn|2 < ∞. The remaining claims are standard results in functional
analysis (see Zeidler (1995a), Sect. 4.4).
Ad (b). If

P∞
n=0 |λn| < ∞, the limn→∞ λn = 0. Consequently, there exists a

natural number n0 such that
P∞

n=n0
|λn|2 ≤

P∞
n=n0

|λn|.
Ad (c). This is the Schwartz kernel theorem. The proof can be found in I.
Gelfand and N. Vilenkin, Generalized Functions, Vol. 4, Sect. I.1.3, Academic
Press, New York, 1964. �

(iv) The resolvent and the energetic Green’s function of the Hamiltonian H: Let the
complex number E be different from all the eigenvalues E0, E1, . . . Introduce
G(E) := (H − EI)−1. Then the energetic Green’s operator

G(E) : L2(R) → L2(R)

is linear and continuous. Explicitly,

G(E)ϕ =

∞
X

n=0

〈ϕn|ϕ〉
En − E ϕn, ϕ ∈ L2(R).

The operator G(E) has an L2(R
2)-kernel called the energetic Green’s function

of the quantized harmonic oscillator. Explicitly,

G(x, y; E) =

∞
X

n=0

ϕn(x)ϕn(y)†

En − E , x, y ∈ R.

This series is convergent in L2(R
2). For all x ∈ R, we have

(G(E)ϕ)(x) =

Z

R

G(x, y; E)ϕ(y)dy.

The operator R(E) := −G(E) is called the resolvent of H.
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(v) The Euclidean propagator kernel: Let t > t0. Set β := (t−t0)/�. Since the series
P∞

n=0 e−βEn is convergent, it follows from Theorem 7.40(ii) that the Euclidean

propagator PEuclid(t, t0) := e−βH is a trace-class operator on L2(R), and it has
an L2(R

2)-kernel given by the series

P(x, t; y, t0) :=

∞
X

n=0

e−βEnϕn(x)ϕn(y)†,

which is convergent in the Hilbert space L2(R
2).

Proposition 7.41 For all positions x, y ∈ R and all times t > 0, the Euclidean
propagator kernel reads as

P(x, t; y, 0) =
1

x0

√
2π sinh ωt

exp

j

− (x2 + y2) cosh ωt − 2xy

2x2
0 sinh ωt

ff

.

For t > t0, we get P(x, t; y, t0) = P(x, t − t0; y, 0).

Proof. This is the classical Mehler formula for Hermite polynomials which can
be found in A. Erdéley et al. (Eds.), Higher Transcendental Functions, Vol. III,
McGraw-Hill, New York, 2006. Explicitly, the Mehler formula reads as

1√
1 − z2

exp

j

− 1

2(1 − z2)
[(x2 + y2)(1 + z2) − 4xyz]

ff

= exp

„

−x2

2
− y2

2

« ∞
X

n=0

zn

2nn!
Hn(x)Hn(y) (7.143)

for all x, y ∈ R and all complex numbers z with |z| < 1. �

We will see in Sect. 7.6.8 that the Euclidean propagator of a single harmonic
oscillator governs the thermodynamics of an ideal gas if we set β := 1/kT
where T is the temperature and k is the Boltzmann constant.

(vi) The generalized Feynman propagator kernel and the Maslov indices: We want
to show that analytic continuation of the Euclidean propagator kernel yields
the function

K(x, t; y, 0) :=
e−iπ/4 e−iπμ(0,t)/2

x0

p

2π| sin ωt|
exp

„

i
(x2 + y2) cos ωt − 2xy

2x2
0 sin ωt

«

.

(7.144)

This so-called Feynman–Souriau formula is valid for both
• all positions x, y ∈ R and
• all non-critical times t ∈]tn,crit, tn+1,crit[ with n = 0, 1, 2, ...
Here, the critical times are given by tn,crit := nπ

ω
. The Maslov index is defined

by

μ(0, t) := n for all t ∈ ]tn,crit, tn+1,crit[ . (7.145)

For all t > t0, we set K(x, t; y, t0) := K(x, t − t0; y, 0). The function K is called
the generalized Feynman propagator kernel (or briefly the Feynman propagator
kernel) of the quantized harmonic oscillator. The additional factors

e−iπ/4 e−iπμ(0,t)/2 (7.146)
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appearing in (7.144) are called the critical Maslov phase factors. In terms of
mathematics, in the following proof we will show that these phase factors
are obtained in a natural way by means of analytic continuation. In terms
of physics, we will show below that the Maslov phase factors are closely related
to causality.

Proof. To simplify notation, we set ω := 1. In order to find the analytic
continuation, we replace the real variable t by the complex variable z. This
way, using Prop. 7.41 we get

P(x, z; y, 0) =
1

x0

√
2π sinh z

exp

j

− (x2 + y2) cosh z − 2xy

2x2
0 sinh z

ff

.

Now set z := it. Then sinh z = i sin t and cosh z = cos t for all t ∈ C. Suppose
that

tn,crit < t < tn+1,crit, n = 0, 1, 2, . . .

Then sin t = (−1)n| sin t|. Considering the square-root function on its Riemann
surface (see Fig. 8.6 on page 714), we obtain

√
i sin t =

p

(−1)ni| sin t| =
q

einπeiπ/2| sin t| = einπ/2eiπ/4
p

| sin t|.

This yields the claim (7.144). �

Focal points and the Morse index (Maslov index). We want to show
that the singularities of the Feynman propagator kernel K(x, t; y, t0) are related to
the Morse indices of focal points in classical mechanics. To this end, consider a
harmonic oscillator of mass m > 0 and angular frequency ω > 0 on the real line.
The classical equation of motion reads as

mq̈(τ) + ω2q(τ) = 0, τ ∈ R, q(0) = q0, q̇(0) = q1

with the characteristic length x0 :=
p

�/mω. In Sect. 6.5.4, we have introduced
the crucial Morse (or Maslov) index which coincides with (7.145) above. Explicitly,
the critical points in time are characterized by the fact that the boundary value
problem

q̈(t) + ω2q(t) = 0, 0 < t < tn,crit, q(0) = q(tn,crit) = 0

has not only the trivial solution q(t) ≡ 0, but also a nontrivial solution, namely,
q(t) := sin ωt. Observe that the function P has singularities precisely at the critical
points in time, since sin ωtn,crit = 0. Moreover, the Morse index μ(0, t) jumps at
the critical points in time.

The Feynman propagator kernel K(x, t; y, t0) of the quantized harmonic
oscillator contains information about the global behavior of the classical
harmonic oscillator.

This phenomenon is typical for the quantization of classical dynamical systems.84

Causality and the motivation of the Maslov phase factors. Using the
Dirac delta function in a formal way, we want to motivate formula (7.146) above in
terms of physics. To simplify notation, let us use the convention ω = � = m := 1.
Hence x0 = 1. The starting point is the product formula (7.90) for the propagator
kernel, that is,

84 See M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New
York, 1990.
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K(x, t; y, 0) =

Z

R

K(x, t − τ ; z, 0)K(z, τ ; y, 0) dz (7.147)

which is based on the causality relation e−itH = e−i(t−τ)He−iτH .
(I) Consider the first critical time interval 0 < t < t1,crit with t1,crit = π. Then

, then analytic continuation of the Euclidean propagator P from Prop. 7.41 yields
the regular Feynman propagator kernel

K(x, t; y, 0) =
e−iπ/4

√
2π sin t

exp

„

i
(x2 + y2) cos t − 2xy

2 sin t

«

, 0 < t < π.

Let us now study the limit t → π − 0. If t = π
2
, then

K
“

x,
π

2
; y, 0

”

=
e−iπ/4e−ixy

√
2π

.

By the product rule (7.147), we get

lim
t→π−0

K(x, t; y, 0) : =

Z

R

K
“

x,
π

2
; z, 0

”

K
“

z,
π

2
; y, 0

”

dz

= e−iπ/2 · 1

2π

Z

R

e−i(x+y)zdz = e−iπ/2δ(x + y).

(II) Now consider the second critical time interval π < t < 2π. We want to
define the propagator kernel on the interval ]π, 2π[ in such a way that

lim
t→π+0

K(x, t; y, 0) = lim
t→π−0

K(x, t; y, 0) = e−iπδ(x + y).

The appropriate definition looks like

K(x, t; y, 0) :=
e−iπ/4e−iπ/2

p

2π| sin t|
exp

„

i
(x2 + y2) cos t − 2xy

2 sin t

«

, π < t < 2π.

To see this, set t := π+τ. Using sin(π+τ) = − sin τ together with limτ→0
sin τ

τ
= 1,

we obtain

lim
τ→+0

K(x, π + τ ; y, 0) = e−iπ/2 lim
τ→+0

e−iπ/4ei(x+y)2/2τ

√
2πτ

= e−iπ/2δ(x + y).

The latter limit follows from

lim
τ→+0

Kfree(z, τ ; 0, 0) = δ(z)

for the propagator kernel Kfree(z, τ ; 0, 0) = e−iπ/4 · eiz
2/2τ

√
2πτ

of a free quantum particle

on the real line.
(III) Similarly, we extend the definition of the propagator kernel K to the other

critical time intervals. �

Using the theory of distributions, the formal argument above can be reformu-
lated in terms of rigorous mathematics.
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7.6.8 Ideal Gases and von Neumann’s Density Operator

The statistical physics of the multi-particle system of N harmonic os-
cillators is governed by the Euclidean propagator of a single harmonic
oscillator.

Folklore

We want to explain the following fundamental principle in physics:

In order to pass from quantum mechanics to statistical physics, apply the
replacement

it

�
�→ 1

kT
.

Here, we use the following notation: t time, T absolute temperature, h
Planck’s quantum of action, � = h/2π, and k Boltzmann constant.

It turns out that the computation methods in statistical physics are frequently easier
to handle than the corresponding methods in quantum mechanics. The reason is
that, for T > 0 and t > 0, the integral

Z ∞

0

e−E/kT dE

is well-defined whereas the oscillating integral
Z ∞

0

e−iEt/�dE

does not exist. The Euclidean trick in physics is to start with imaginary time
t = −iτ. Then it = τ is real. At the end of the computation, one performs an
analytic continuation to real time t, if possible. Fortunately enough, this trick works
well in many cases.

A gas of quantum particles on the real line. The following situation is
the prototype of quantum statistics. Consider a large fixed number of N identical
quantum particles (bosons) on the real line which are harmonic oscillators of mass
m and fixed angular frequency ω > 0. To simplify notation, physicists introduce
the quantity

β :=
1

kT

in statistical physics. Here, T is the absolute temperature of the gas, and k is the
universal Boltzmann constant. The physical dimension of kT is energy. For studying
the physics of the gas, the following two quantities

x0 :=

r

�

mω
, β�ω =

�ω

kT

are important. Here, x0 has the physical dimension of length, and β�ω is dimen-
sionless. It is our aim to compute the following physical quantities of the gas at the
temperature T > 0.

(i) Total energy of the gas:

E = NĒ = N�ω

„

1

2
+

1

eβ�ω − 1

«

.
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(ii) Relative energy fluctuations:

ΔE

E
=

ΔĒ

Ē
√

N
=

1√
N cosh β�ω

2

.

For large particle number N , the relative energy fluctuations are small, as
expected by experience for gases in daily life.

(iii) Mass density of the gas:

μ(x, T ) = Nm�(x, T ) =
Nm

x0

s

tanh βω�

2

π
exp

j

x2(1 − cosh β�ω)

x2
0 sinh β�ω

ff

.

Here, the density function �(x, T ) := 〈x|�(T )|x〉 is related to von Neumann’s density
operator �(T ). The derivative of energy with respect to temperature,

C(T ) = ET (T, N),

is called the heat capacity of the gas. A small change ΔT of temperature produces
the following amount of heat,

ΔQ = C(T )ΔT.

The heat capacity can be measured in physical experiments. We will compute below
the mean energy Ē and the mean energy fluctuation ΔĒ of one particle. For the
total energy, this yields E = NĒ. Moreover, we assume that the single particles be-
have independently. Then, by the theory of probability, the total energy dispersion
is additive,

(ΔE)2 = (ΔĒ)2 + ... + (ΔĒ)2 = N(ΔĒ)2.

Hence ΔE/E = ΔĒ/Ē
√

N.
Bose–Einstein condensation. To understand the physics of our gas, let us

consider the two important special cases of high temperature and low temperature.

(H) For high temperature T (i.e., β is small), we get up to terms of lower order:85

E = NkT,
ΔE

E
=

1√
N

, μ(x, T ) =
Nm

σ
√

2π
e−x2/2σ2

.

The mass density function μ is a Gaussian distribution with mean fluctuation
σ := x0/

√
β�ω. The energy law, E = N · kT , is a special case of the classical

Boltzmann law of energy equipartition. This law tells us that, for many-particle
systems at high temperature, each degree of freedom contributes the amount
of mean energy kT to the total energy of the system. For the heat capacity of
the gas, we get C = Nk.

(L) For low temperature T , we obtain:

lim
T→+0

E = 1
2
�ωN, lim

T→+0

ΔE

E
= 0.

As expected, the particle energy is equal to the ground state energy of the har-
monic oscillator. Physicists say that the excited energy states are frozen at low
temperatures. This crucial phenomenon is called Bose-Einstein condensation.86

85 Note that sinh β�ω = β�ω+O(β2) and cosh β�ω = 1+β2
�

2ω2+O(β4) as β → 0.
86 In 2001, Eric Cornell, Wolfgang Ketterle, and Carl Wieman were awarded the

Nobel prize in physics for the experimental achievement of Bose–Einstein con-
densation in dilute gases of alkali atoms, and for fundamental studies of the
properties of the condensates.
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Note that the behavior of the gas at low temperatures is governed by typical quan-
tum effects.

The partition function. The possible energies of the gas particles are given
by

En = �ω(n + 1
2
), n = 0, 1, 2, , ...

By statistical physics, the physical properties of this many-particle system follow
from the partition function

Z(β) :=

∞
X

n=0

e−βEn .

Recall that β := 1/kT . For a single particle, the probability of having the energy
En is equal to

pn :=
e−βEn

Z(β)
.

This yields the mean energy Ē and the mean energy fluctuation ΔĒ ≥ 0 of a single
particle, namely,

Ē =

∞
X

n=0

Enpn, (ΔĒ)2 =

∞
X

n=0

(En − Ē)2pn.

We claim that

Ē = �ω

„

1

2
+

1

eβ�ω − 1

«

,
ΔĒ

Ē
=

1

cosh β�ω
2

. (7.148)

Proof. By the geometric series 1 + q + q2 + ... = 1
1−q

for |q| < 1, we get

Z(β) =
∞
X

n=0

e−βEn =
e−β�ω/2

1 − e−β�ω
=

1

2 sinh β�ω
2

.

Observe now that

Ē = −Z′(β)

Z(β)
, E2 =

Z′′(β)

Z(β)
, (ΔE)2 = E2 − Ē2.

This yields the claim (7.148) after an elementary computation. �

The Wick trick (source trick). Alternatively, define the modified partition
function

Z(β, J) :=
∞
X

n=0

e−En(β−J) =
1

2 sinh (β−J)ω�

2

where J is an additional small real parameter. Then Z(β, 0) = Z(β), and

Ē =
ZJ(β, 0)

Z(β, 0)
, E2 =

ZJJ(β, 0)

Z(β, 0)
.

Tricks of this kind frequently appear while computing path integrals in quantum
field theory; those tricks are also closely related to the Wick theorem in quantum
field theory published in 1950. Therefore, we will briefly speak of the Wick trick.
Behind this trick, there is the following general strategy in physics which was in-
troduced by Schwinger: Add some source term to the physical system, and study
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the change of the physical system under a change of the source J (see Chap. 14 of
Vol. I).

Von Neumann’s density operator. Let H : D(H) → L2(R) be the self-
adjoint Hamiltonian operator of the quantum harmonic oscillator on the real line,

H =
P 2

2m
+

mω2Q2

2
.

Let ϕ0, ϕ1, ... be the eigensolutions of H with

Hϕn = Enϕn, n = 0, 1, 2, ...

For any state ϕ ∈ L2(R) and any temperature T > 0, define

e−βHϕ :=

∞
X

n=0

e−βEn〈ϕn|ϕ〉ϕn. (7.149)

Note that

||e−βHϕ||2 =

∞
X

n=0

|e−βEn〈ϕn|ϕ〉|2 ≤
∞
X

n=0

|〈ϕn|ϕ〉|2 = ||ϕ||2.

Therefore, the operator e−βH : L2(R) → L2(R) is linear and continuous. For the
trace, we get

tr e−βH =

∞
X

n=0

〈ϕn|e−βHϕn〉 =

∞
X

n=0

e−βEn .

This is precisely the partition function Z. Therefore, the operator e−βH is of trace
class. In order to pass to the language of physicists, denote the vector ϕn by |En〉.
Mnemonically, we write

e−βH =

∞
X

n=0

e−βEn |En〉〈En|.

In fact, this implies e−βH |ϕ〉 =
P∞

n=0 e−βEn |En〉〈En|ϕ〉 which coincides with
(7.149). If χ0, χ1, ... is an arbitrary complete orthonormal system in the Hilbert
space L2(R), then

tr e−βH =

∞
X

n=0

〈χn|e−βHχn〉 =

∞
X

n=0

e−βEn〈χn|En〉〈En|χn〉.

The relation between the propagator P (t, 0) := e−iHt/� and the operator e−βH is
given by

e−βH = P (−iβ�, 0) .

Now to the point. The linear bounded operator � : L2(R) → L2(R) defined by

� :=
e−βH

tr e−βH

is called the density operator for our many-particle system of quantum harmonic
oscillators on the real line. Explicitly,
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� =

∞
X

n=0

pn|En〉〈En|

where pn = e−βEn/Z(β). The real numbers

�ij := 〈χi|�χj〉, i, j = 0, 1, 2, ...

are called the entries of the density matrix with respect to the complete orthonormal
system χ0, χ1, ... For the mean energy value Ē and the mean energy fluctuation ΔĒ
of a particle, we get

Ē = tr(�H), (ΔE)2 = tr(�(H − Ē)2).

In fact, since �|En〉 = pn|En〉 for all n,

tr(�H) =

∞
X

n=0

〈En|�H|En〉 =

∞
X

n=0

pnEn〈En|En〉 =

∞
X

n=0

pnEn = Ē.

A similar argument applies to ΔĒ. Using the language of physicists, define87

�(x, T ) :=
〈x|e−βH |x〉

tr e−βH
.

Since ϕn(x) = 〈x|En〉,

�(x, T ) =
X

n=0

pn〈x|En〉〈En|x〉 =
∞
X

n=0

pn|ϕn(x)|2.

Recall that the function x �→ |ϕn(x)|2 is the particle density of the nth energy state
of the harmonic oscillator. Moreover,

Z

R

�(x, T )dx =
∞
X

n=0

pn = 1.

Therefore, it is reasonable to regard �(x, T ) as the (normalized) particle density of
the gas at the point x at the temperature T .

Semiclassical quantum statistics and the Dirac calculus (formal ap-
proach). We want to explain how the Dirac calculus allows us to formally pass
from the density operator � to the semiclassical Gibbs statistics for high tempera-
tures. Let A : L2(R) → L2(R) be a linear continuous operator of trace class. For a
complete orthonormal system χ0, χ1, ... of the complex Hilbert space L2(R), we get

tr A =

∞
X

n=0

〈χn|Aχn〉. (7.150)

The point is that this number is finite, and it does not depend on the choice of the
complete orthonormal system χ0, χ1, ... The trick of the Dirac calculus is to formally
extend the trace formula (7.150) to complete orthonormal systems of generalized
eigenfunctions. For example, using the system {〈x|}x∈R, we get

87 See the formal Dirac calculus on page 596 of Vol. I.
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tr A =

Z

R

〈x|A|x〉dx. (7.151)

Applying this formal approach, we are going to show that for high temperatures T ,
we obtain the following approximative formulas.88

(i) Mean value of energy:

Ē =

Z

R2
H(x, p)�(x, p; T )

dxdp

h
.

(ii) Mean energy fluctuation: (ΔĒ)2 =
R

R2(H(x, p) − Ē)2�(x, p; T ) dxdp
h

.

Here, H(x, p) := p2

2m
+ mω2x2

2
. For the density function in the phase space,

�(x, p; T ) :=
e−βH(x,p)

R

R2 e−βH(x,p) dxdp
h

. (7.152)

For a given function A = A(x, p), the mean value Ā is defined by

Ā =

Z

R2
A(x, p)�(x, p; T )

dxdp

h
.

If the function A = A(x) only depends on the position variable x, then

Ā =

Z

R

A(x)�(x, T )dx

where we define

�(x, T ) :=

Z

R

�(x, p; T )
dp

h
.

Let us prove (i) and (ii) above in a formal way. To begin with, observe that
〈x|P 2|p〉 = p2〈x|p〉 and

〈x|Q2|p〉 = 〈Q2x|p〉 = x2〈x|p〉.

Hence

〈x|H|p〉 = 〈x| P
2

2m
+

mω2Q2

2
|p〉 = H(x, p)〈x|p〉.

Up to terms of order O(β2) as β → 0, we get

〈x|e−βH |p〉 = 〈x| (I − βH) |p〉.

Hence
〈x|e−βH |p〉 = (1 − βH(x, p)) 〈x|p〉 = e−βH(x,p)〈x|p〉.

For the trace, we obtain tr e−βH =
R

R
〈x|e−βH |x〉dx. Using Dirac’s completeness

relation
R

R
|p〉〈p| dp = I, we obtain

tr e−βH =

Z

R2
〈x|e−βH |p〉〈p|x〉dxdp.

88 Note that dxdp/h and �(x, p; T ) are dimensionless.
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Since 〈x|p〉 = eipx/
√

h and 〈p|x〉 = 〈x|p〉†, we get

tr e−βH =

Z

R2
e−βH(x,p) dxdp

h
.

Summarizing, from � = e−βH/ tr e−βH it follows that

〈x|�|p〉 = �(x, p; T )〈x|p〉
where �(x, p; T ) is defined by (7.152). Finally,

Ē = tr(�H) =

Z

R

〈x|�H|x〉dx =

Z

R2
〈x|�|p〉〈p|H|x〉dxdp.

Hence Ē =
R

R2 �(x, p; T )H(x, p) dxdp
h

. Similarly, we argue for ΔĒ.
Rigorous justification. To begin with, observe that the formal Dirac calculus

tells us that

〈x|e−βH |x〉 =

∞
X

n=0

e−βEn〈x|En〉〈En|x〉 =

∞
X

n=0

e−βEn |〈x|En〉|2,

and tr e−β/kT =
R

R
〈x|e−βH |x〉dx. In order to obtain a rigorous formulation, let us

write this as

tr e−βH = lim
m→∞

Z

R

m
X

n=0

e−βEn |ϕn(x)|2dx. (7.153)

Proposition 7.42 The trace formula (7.153) holds. Explicitly, the trace tr e−βH is
the partition function of the quantum harmonic oscillator.

Proof. The trace class operator e−βH has the complete orthonormal system of
eigenvectors ϕ0, ϕ1, ... with e−βHϕn = e−βEnϕn for all n. The trace is the sum of
the eigenvalues. Hence

tr e−βH =
∞
X

n=0

e−βEn .

On the other hand, it follows from ||ϕn||2 =
R

R
|ϕn(x)|2dx = 1 that

lim
m→∞

Z

R

m
X

n=0

e−βEn |ϕn(x)|2dx = lim
m→∞

m
X

n=0

e−βEn .

�

Introduce the kernel to the operator e−βH by setting

P(x, y; T ) = 〈x|e−βH |y〉 =

∞
X

n=0

e−βEn〈x|En〉〈En|y〉,

in the language of the Dirac calculus. This means that we define

P(x, y; T ) :=

∞
X

n=0

e−βEnϕn(x)ϕn(y)†.

Recall that β := 1/kT and x0 :=
p

�/mω. The Mehler formula (7.143) tells us the
following.



7.7 The Feynman Path Integral 547

Proposition 7.43 For all positions x, y ∈ R and all temperatures T > 0, we get

P(x, y; T ) =
1

x0

√
2π sinh β�ω

exp

j

− (x2 + y2) cosh β�ω − 2xy

2x2
0 sinh β�ω

ff

.

Moreover, for the partition function of the quantum harmonic oscillator, we have
the trace formula

Z

R

P(x, x; T )dx =
∞
X

n=0

e−En/kT = tr e−H/kT .

For the density function �(x, T ) := 〈x|�|x〉, this implies

�(x, T ) =
P(x, x; T )

Z(β)
=

1

x0

s

tanh βω�

2

π
exp

j

x2(1 − cosh β�ω)

x2
0 sinh β�ω

ff

.

Von Neumann’s equation of motion for general density operators. We
are given real numbers p0, p1, ... with 0 ≤ pn ≤ 1 and p0 + p1 + ... = 1. Choose a
complete orthonormal system 〈0|, 〈1|, ... in the Hilbert space L2(R). Define

�0 :=
∞
X

n=0

pn|n〉〈n|.

Moreover, for each time t ∈ R, we define

�(t) := eiHt/��0e
−iHt/� .

This is the equation of motion for an arbitrary density operator in the Hilbert
space L2(R). This equation corresponds to the time-dependence of observables in
the Heisenberg picture. For an observable A : D(A) → L2(R), we define the mean
value

Ā(t) := tr(�(t)A), t ∈ R

if this trace exists. In the special case where �0 =
P∞

n=0 pn|En〉〈En|, we obtain
�(t) = �0 for all times t ∈ R.

7.7 The Feynman Path Integral

The history of mathematics shows that every well-working formal calcu-
lus used in physics can be rigorously justified once a day, by finding the
appropriate rigorous tools.

Folklore

7.7.1 The Basic Strategy

In Chap. 7 of Vol. I, we studied discrete path integrals in a rigorous setting for N
degrees of freedom. In this section, we will study the limit N → ∞. Our plan is the
following one:
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(i) We start with the definition of the Feynman path integral (7.156) below as a
limit in position space, where N → ∞.

(ii) We rigorously show that this limit exists (in a generalized sense) in the two
special cases of
• the free quantum particle on the real line (Sect. 7.7.3) and
• the harmonic oscillator (Sect. 7.7.4).
It turns out that these limits coincide with the propagator kernel introduced in
Sects. 7.6.4 and 7.6.7 by using the rigorous method of Fourier analysis combined
with analytic continuation.

(iii) This brings us to the formulation of the propagator hypothesis saying that the
Feynman path integral always represents the Feynman propagator kernel of
the Schrödinger equation. We motivate this propagator hypothesis by using
the Dirac calculus in a formal sense (Sect. 7.7.6).

(iv) In Sect. 7.8, we will rigorously study finite-dimensional Gaussian integrals
with N degrees of freedom. Motivated by this, in Sect. 7.9 we will give the
definition of normalized infinite-dimensional Gaussian integrals by using the
spectral theory of quadratic forms and the determinant of infinite-dimensional
operators based on the analytic continuation of the corresponding zeta function.

(v) For the free quantum particle and the harmonic oscillator, we rigorously show
that the normalized infinite-dimensional Gaussian integral represents the Feyn-
man propagator kernel, up to a normalization factor (Sects. 7.9.3 and 7.9.4).

(vi) This brings us to the spectral hypothesis saying that the Feynman path integral
can be computed by means of infinite-dimensional Gaussian integrals, up to a
normalization factor. This is the basic method successfully used by physicists
in quantum field theory. Fortunately enough, the normalization factor does
not play any role, as a rule, since it drops out by considering quotients of path
integrals.

The following remarks are in order:

• The concrete calculations performed by physicists show that the propagator hy-
pothesis above is right in quantum mechanics.89 Many concrete examples can be
found in the following two standard references:

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
Berlin, 1998 (950 references).

H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer
Physics, World Scientific, River Edge, New York, 2004.

• In Sect. 7.11, we will study the rigorous Wiener path integral for Brownian motion
together with Cameron’s no-go theorem for the Feynman path integral.

• In Sect. 7.12, we will investigate the relation between the Weyl calculus and the
Feynman path integral (method of pseudo-differential operators).

Detailed hints to both the mathematical and physical literature concerning the
Feynman path integral can be found in Sect. 7.22 on page 667.

The creation of a comprehensive rigorous mathematical theory for Feyn-
man path integrals (also called functional integrals) in quantum field theory
is a challenge for the mathematics of the future.

89 However, observe the following peculiarity: If caustics appear in classical mechan-
ics, then one has to handle carefully the Maslov indices in quantum mechanics,
as in the case of the harmonic oscillator in Sect. 7.6.7.
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7.7.2 The Basic Definition

Let us consider the Schrödinger equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + U(x)ψ(x, t), x ∈ R, t > s (7.154)

together with the corresponding classical action

S[q] :=

Z t

s

˘

1
2
mq̇(τ)2 − U

`

q(τ)
´¯

dτ. (7.155)

We assume that the potential U : R → R is smooth. Choose N = 1, 2, . . . , and divide
the time interval [s, t] into the subintervals t0 = s < t1 < . . . < tN−1 < tN = t,
where

tj := s + jΔt, j = 0, 1, . . . , N, Δt :=
t − s

N
.

Fix the positions x, y ∈ R on the real line. Let the symbol C{s, t} denote the set of
all continuous functions q : [s, t] → R with the boundary condition

q(s) := x, q(t) := y.

For each path q ∈ C{s, t}, we set qj := q(tj), where j = 0, 1, . . . , N. By definition,
the discrete action of this path reads as

SN :=

N−1
X

n=0

j

m

2

“qn+1 − qn

Δt

”2

− U(qn)

ff

Δt.

Finally, let us introduce the characteristic length l :=
q

2π�iΔt
m

. Here, the square

root is to be understood in the sense of the principal value.
Basic definition. Our definition of the Feynman path integral reads as

Z

C{s,t}
eiS[q]/� Dq := lim

N→∞

1

l

Z

RN−1
eiSN /� dq1

l
· · · dqN−1

l
. (7.156)

Since the boundary values q0 = y and qN = x are fixed, the integrals on the
right-hand side of (7.156) are well-defined (N − 1)-dimensional integrals of the real
variables q1, . . . , qN−1. We assume that the limit N → ∞ exists.

Intuitive interpretation. We regard
R

C{s,t} eiS[q]/�Dq as an integral over the

paths in the space C{s, t}. The definition (7.156) will be motivated in great detail
in Sect. 7.7.6 on page 555. The path integral depends on x, t, y, s. We write

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq.

In the following two sections, we will show that, for the free quantum particle and
the harmonic oscillator on the real line, the function K is nothing else than the
Feynman propagator kernel K.
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7.7.3 Application to the Free Quantum Particle

Let us consider the Schrödinger equation (7.154) above with vanishing potential,
U(x) ≡ 0. The corresponding classical action reads as

S[q] :=

Z t

s

1
2
mq̇(τ)2dτ.

In Sect. 7.5.1, we have computed the corresponding Feynman propagator kernel

K(x, t; y, s) =

r

m

2π�i(t − s)
eim(x−y)2/2�(t−s) (7.157)

for a freely moving quantum particle on the real line (see Theorem 7.16 on page
488).

Proposition 7.44 For the free quantum particle, the Feynman path integral coin-
cides with the Feynman propagator kernel, that is, we have

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq (7.158)

for all positions x, y ∈ R and all times t > s.

In the following proof, we will use a slight modification (7.160) of the original
definition (7.156) of the path integral. In terms of physics, we separate the classical
contribution from the quantum fluctuations. In terms of mathematics, we pass to
homogeneous boundary conditions.
Proof. To simplify notation, set � := 1 and s := 0.

(I) The classical trajectory. The action of a classical free particle of mass m on
the real line is given by

S[q] :=

Z t

0

1
2
mq̇(τ)2 dτ.

Recall that the boundary-value problem

mq̈(τ) = 0, 0 < τ < t, q(0) = y, q(t) = x

corresponds to the motion of the particle with given endpoints. The unique solution
is qclass(τ) = y + τ

t
(x − y) with the classical action

S[qclass] =

Z t

0

1
2
mq̇class(τ)2dτ =

m(x − y)2

2t
.

(II) Decomposition of trajectories. In order to study perturbations of the clas-
sical trajectory, we consider the trajectories

q(τ) = qclass(τ) + r(τ), τ ∈ [0, t]

where r ∈ C2
0 [0, t], that is, the function r : [0, t] → R is twice continuously differen-

tiable and satisfies the boundary condition r(0) = r(t) = 0. Then

S[q] = S[qclass] + S[r]. (7.159)

In fact, integration by parts yields
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Z t

0

q̇class(τ)ṙ(τ)dτ = −
Z t

0

q̈class(τ)r(τ)dτ = 0,

since qclass satisfies the classical equation of motion, mq̈class(τ) = 0. Motivated by
(7.159), let us slightly modify the definition (7.156) of the path integral by setting

Z

C{0,t}
eiS[q]/� Dq := eiS[qclass]/� lim

N→∞

1

l

Z

RN−1
eiSN /� dr1

l
· · · drN−1

l

(7.160)

with the discrete action

SN :=

N−1
X

n=0

j

m

2

“rn+1 − rn

Δt

”2
ff

Δt

and the boundary values r0 = rN := 0.
(III) The generalized Gaussian integral. Let a > 0 or a < 0 and let β ∈ R.

According to (7.183) on page 561, we have the crucial Gaussian integral formula

Z

R

e−
1
2 iap2

eiβp dp√
2π

:=
e−β2/2ia

√
ia

. (7.161)

Here, the square root is to be understood as principal value. As we will discuss in
Sect. 7.8, this definition has to be understood in the sense of analytic continuation.

(IV) Computation of the integrals from (7.160). Let us first integrate over the
variable r1. This yields the integral

1

l2

Z

R

exp

„

im

2Δt

`

(r2 − r1)
2 + (r1 − r0)

2´
«

dr1

which is equal to

1

l2
exp

„

imr2
2

4Δt

«

Z

R

exp

j

im

Δt

“

r1 −
r2

2

”2
ff

dr1 =

r

m

2πi(2Δt)
exp

„

imr2
2

4Δt

«

.

Similarly, by induction, integrating over r1 · · · rn we get

r

m

2πi(n + 1)Δt
exp

„

imr2
n+1

2(n + 1)Δt

«

.

Choosing n = N − 1 and observing that r0 = rN = 0, we obtain

r

m

2πiNΔt
=

r

m

2πit
.

This expression does not depend on N . Thus, the limit N → ∞ yields the same
value. �
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7.7.4 Application to the Harmonic Oscillator

The path integral for the harmonic oscillator is closely related to the dif-
ference method for the classical harmonic oscillator in numerical analysis.

Folklore

Consider the Schrödinger equation (7.154) above for the harmonic oscillator with
mass m and angular frequency ω > 0. This corresponds to the potential U(x) =
mω2

2
x2. The classical action is given by

S[q] =

Z t

s

1
2
mq̇(τ)2 − 1

2
mω2q(τ)2 dτ. (7.162)

In Sect. 7.6.7 on page 537, we have computed the corresponding Feynman propa-
gator kernel

K(x, t; y, s) =
1

x0

p

2πi sin ω(t − s)
exp

„

i
(x2 + y2) cos ω(t − s) − 2xy

2x2
0 sin ω(t − s)

«

for the harmonic oscillator. Here, we restrict ourselves to the first critical time

interval s < t < s + t1,crit, where t1,crit = π
ω

. Furthermore, x0 =
q

�

mω
.

Proposition 7.45 For the quantized harmonic oscillator, the Feynman path inte-
gral coincides with the Feynman propagator kernel on the first critical time interval,
that is, for all positions x, y ∈ R, and all times t ∈]s, s + t1,crit[, we have

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq. (7.163)

This proposition is to be understood in a generalized sense which will be made
precise in the following proof. First the Gaussian integrals have to be understood in
a generalized sense by using analytic continuation. Secondly the limit N → ∞ from
(7.156) does not exist in the classical sense. Therefore, we will use a summation
method.
Proof. (I) The classical trajectory. The boundary-value problem

q̈(τ) + ω2q(τ) = 0, s < τ < t, q(s) = y, q(t) = x (7.164)

has the unique solution qclass(τ) = y cos ω(τ − s) +
`

x − y cos ω(τ − s)
´ sin ω(τ−s)

sin ω(t−s)
.

This is a trajectory of the classical harmonic oscillator with the action

S[qclass] = � · (x2 + y2) cos ω(t − s) − 2xy

2x2
0 sin ω(t − s))

.

(II) Decomposition of trajectories. Now we consider perturbations of the clas-
sical trajectory, by setting

q(τ) := qclass(τ) + r(τ)

where r ∈ C2
0 [s, t]. By definition, this notation means that the function r : [s, t] → R

is twice continuously differentiable and satisfies the following boundary condition
r(s) = r(t) = 0. We have

S[q] = S[qclass] + S[r] for all r ∈ C2
0 [s, t]. (7.165)
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In fact, integration by parts yields

Z t

0

q̇classṙ − ω2qclassr dτ = −
Z t

0

(q̈class + ω2qclass)r dτ = 0,

since qclass satisfies the classical equation of motion (7.164). Motivated by (7.165),
let us slightly modify the definition (7.156) of the path integral by setting

Z

C{s,t}
eiS[q]/� Dq := eiS[qclass]/� lim

N→∞

1

l

Z

RN−1
eiSN /� dr1

l
· · · drN−1

l

with the discrete action

SN :=

N−1
X

n=0

j

m

2

“rn+1 − rn

Δt

”2

− mω2

2
r2

n

ff

Δt (7.166)

and the boundary values r0 = rN := 0.
(III) The discrete action. To simplify notation, we set s := 0. The function SN

is a quadratic form. Explicitly,

iSN

�
=

imΔt

2�
· 〈r|ANr〉. (7.167)

Here, we set 〈r|ANr〉 := rdANr with the symmetric matrix

AN :=
1

(Δt)2

0

B

B

B

B

B

B

@

a −1 0 . . . 0 0

−1 a 0 . . . 0 0
...

...
... . . . 0 0

0 0 0 . . . a −1

0 0 0 . . . −1 a

1

C

C

C

C

C

C

A

and rd := (r1, . . . , rN−1). Furthermore, a := 2 − (ωΔt)2.
(IV) The discrete eigenvalue problem. The matrix equation ANr = λr reads as

− rj+1 − 2rj + rj−1

(Δt)2
− ω2rj = λjrj , r0 = rN = 0, (7.168)

where j = 1, . . . , N − 1. This equation has the eigensolutions

λn =
n2π2

t2

„

sin α(n)

α(n)

«2

− ω2, n = 1, . . . , N − 1,

rd
n =

„

sin
nπΔt

t
, sin

2nπΔt

t
, . . . , sin

(N − 1)nπΔt

t

«

,

where α(n) := nπΔt
2t

. Using the limit N → +∞ (i.e., Δt → 0), these eigensolutions

go to the eigensolutions λn = n2π2

t2
− ω2 and q(τ) = sin nπτ

t
of the boundary-

eigenvalue

−r̈(τ) − ω2r(τ) = λr(τ), 0 < τ < t, r(0) = r(t) = 0

for the classical harmonic oscillator.
(IV) The Gaussian integral. By (7.167), we get
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Z

RN−1
eiSN /� dr1

l
· · · drN−1

l
= (

√
γ)N−1

Z

RN−1
e−

1
2 γ〈r|AN r〉 dr1√

2π
· · · drN−1√

2π
,

where γ := mΔt
�i

and l =
q

2πi�Δt
m

. By the key formula (7.190) for Gaussian integrals

on page 564 (based on analytic continuation), we obtain

1

l

Z

RN−1
eiSN /� dr1

l
· · · drN−1

l
=

1

l
√

det AN

.

(V) The problem of convergence. It remains to compute the limit

lim
N→∞

1

l
√

det AN

.

Unfortunately, this limit does not exist in the classical sense. This follows immedi-
ately from

det AN = λ1λ2 · · ·λN−1 =

N−1
Y

n=1

(

n2π2

t2

„

sin α(n)

α(n)

«2

− ω2

)

and 1
l

=
p

m
2π�iΔt

=
√

N ·
p

m
2π�it

.

(VI) Summation method (generalized limit). We set a(nΔt) := Δt · det An for
the indices n = 1, 2, . . . , N. Recall that NΔt = t. In addition let a(0) := Δt. By the
definition of the matrix AN , the Laplace expansion for determinants tells us that

a((n + 1)Δt) − 2a(nΔt) + a((n − 1)Δt)

(Δt)2
+ ω2a(nΔt) = 0

for all n = 1, 2, . . . , N − 1. Letting Δt → 0, we obtain the ordinary differential
equation

ä(τ) + ω2a(τ) = 0, 0 < τ < t

with the initial condition a(0) = 0 and ȧ(0) = 1.90 This initial-value problem has
the unique solution

a(τ) =
sin ωτ

ω
.

This motivates the definition

lim
N→∞

Δt · det AN :=
sin ωt

ω
,

as generalized limit. Therefore, we get

lim
N→∞

1

l
√

det AN

=

r

m

2π�i
lim

N→∞

1√
Δt · det AN

=

r

mω

2π�i sin ωt
.

�

The proof of Prop. 7.45 shows that the computation of the Feynman path
integral for the harmonic oscillator is closely related to the eigenvalues of the cor-
responding classical boundary-value problem. Indeed, this is a crucial method for
computing Feynman path integrals. We will study this in Sect. 7.9 on page 570
by means of the zeta-function regularization for infinite-dimensional Gaussian in-
tegrals.

90 In fact, a(0) = limΔt→0 Δt = 0 and

ȧ(0) = lim
Δt→0

a(Δt) − a(0)

Δt
= lim

Δt→0
A1 − 1 = 2 − 1 = 1.
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7.7.5 The Propagator Hypothesis

Motivated by Props. 7.44 and 7.45, let us formulate the following so-called propa-
gator hypothesis:

(H) For the Schrödinger equation (7.154) on the real line, the Feynman
propagator kernel is given by the Feynman path integral, that is,

K(x, t; y, s) =

Z

C{s,t}
eimS[q]/� Dq.

Here, S[q] is the classical action given by (7.155) on page 549.

7.7.6 Motivation of Feynman’s Path Integral

It is our goal to motivate the propagator hypothesis (H) by using the formal Dirac
calculus.

The classical Liouville measure in phase space. Consider a gas on the real
line at high temperature T > 0. Let x and p denote the position and the momentum
of a gas particle, respectively. In semi-classical statistical physics, the mean value
Ā of a physical quantity A = A(x, p) is given by

Ā =

Z

R

A(x, p)�(x, p; T )dμ(x, p).

Here, � = �(x, p; T ) denotes the density function from (7.152) on page 545. Further-
more, dμ := dxdp/h denotes the Liouville measure. This means that the Liouville
measure μ(Ω) of a compact subset Ω of the (x, p)-phase space is given by

μ(Ω) =

Z

Ω

dμ =

Z

Ω

dxdp

h
.

If the function A = A(x) does not depend on the momentum, then we separately
integrate with respect to the variable p. This yields

Ā =

Z

R

A(x)�(x; T )dx

with �(x, T ) :=
R

R
�(x, p; T ) dp

h
. Note that the appearance of the Planck constant h

as denominator guarantees that the Liouville measure dxdp/h is dimensionless. We
now want to show that the formal Feynman path integral is nothing else than an in-
tegral with respect to a formal infinite-dimensional Liouville measure. Alternatively,
the Feynman path integral can also be viewed as a modified infinite-dimensional
Gaussian integral.

The path integral in the phase space. Consider the motion x = q(t) of a
classical particle with mass m on the real line. For the momentum, p(t) = mq̇(t).
The Hamiltonian function reads as

H(q, p) :=
p2

2m
+ U(q), q, p ∈ R

with the potential U. The action along a trajectory during the time interval [s, t] is
given by
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S[q, p] :=

Z t

s

p(τ)2

2m
− U(q(τ)) dτ. (7.169)

Here, p(τ)2/2m is the kinetic energy and U(q(τ)) is the potential energy of the
classical particle at time τ. Equivalently,

S[q, p] :=

Z t

s

p(τ)q̇(τ) −H(q(τ), p(τ)) dτ.

We now pass to the Schrödinger equation for the corresponding quantum particle
on the real line,

i�ψt(x, t) = Hψ(x, t), (7.170)

with the Hamiltonian operator H = P2

2m
+ U(Q). Recall from (7.88) on page 491

that the initial-value problem for the Schrödinger equation (7.170) has the solution

ψ(x, t) =

Z

R

K(x, t; y, s)ψ0(y)dy, t > s, x ∈ R

with ψ(x, s) = ψ0(x) for all positions x ∈ R at the initial time s. The kernel K has
the physical dimension of [length]−1. In the elegant formal language of the Dirac
calculus,

K(x, t; y, s) = 〈x|e−iH(t−s)/� |y〉.
Our goal is to motivate Feynman’s magic formula

K(x, t; y, s) =

Z

C{s,t}
eiS[q,p]/� DqDp, (7.171)

which tells us that the propagator kernel K can be represented by a path integral.
Here, we integrate over the space C{s, t} of all continuous paths q, p : [s, t] → R

with
q(s) = y, q(t) = x.

That is, we fix the initial time s, the initial point y, the final time t, and the
final point x. Note that both the initial value p(s) and the final value p(t) of the
momentum variable are unconstrained. Moreover, we use the classical action

S[q, p] :=

Z t

s

p(τ)q̇(τ) −H(q(τ), p(τ)) dτ

along the path q = q(τ), p = p(τ), s ≤ τ ≤ t. The symbol D[q, p] represents a
formal infinite-dimensional Liouville measure on the space C[s, t] of curves in the
phase space. Formally,

D[q, p] :=
dp(s)

h

Y

s<τ≤t

dq(τ)dp(τ)

h
.

Since dq(τ)dp(τ)/h is dimensionless, both the measure D[q, p] and the kernel from
(7.171) have the same physical dimension of [length]−1, as expected. The motivation
given below will show that the magic formula (7.171) stands for the following formal
limit
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K(x, t; y, s) = lim
N→∞

Z

R2N−1
eiSN /� dp0

h

N−1
Y

n=1

dqndpn

h
(7.172)

along with the discrete action

SN :=

N−1
X

n=0

“

pn
qn+1 − qn

Δt
−H(qn, pn)

”

Δt.

Here, q0 := y and qN := x.
Applying the Dirac calculus. We want to motivate formula (7.172). To

simplify notation, set � = 1. Then h = 2π. Let us decompose the time interval [s, t]
into N pieces of equal length by setting

s = t0 < t1 < ... < tN−1 < tN = t

along with tn := s+nΔt and Δt := (t−s)/N. Recall the propagator kernel formula:
K(x, t; y, s) := 〈x|e−iNHΔt|y〉.
(i) Causality and the product property of the propagator kernel: For all interme-

diate times τ with s ≤ τ ≤ t, we get the following product formula

K(x, t; y, s) =

Z

R

K(x, t; q, τ)K(q, τ ; y, s)dq. (7.173)

In fact, by the addition theorem for the exponential function,

e−iH(t−s) = e−iH(t−τ)e−iH(τ−s).

Using the completeness relation
R

R
|q〉〈q| dq = I, we obtain

〈x|e−iH(t−s)|y〉 =

Z

R

〈x|e−iH(t−τ)|q〉〈q|e−iH(τ−s)|y〉dq

which proves (7.173). From the physical point of view, the product formula
(7.173) reflects nothing other than causality (see page 482).

(ii) The propagator kernel for small time intervals: We want to show that the
propagator kernel K for the small time interval [s, s+Δt] can be approximately
represented by the following simple key formula

K(x, s + Δt; y, s) =

Z

R

e−iH(y,p)Δt eip(x−y) dp

2π
, (7.174)

up to terms of order (Δt)2. To get this, note that the following is true, up to
terms of order (Δt)2. By Taylor expansion,

e−iHΔt = I − iHΔt.

Recall that H = P2

2m
+ mω2Q2

2
. For the position operator, Q|y〉 = y|y〉. Hence,

by the completeness relation
R

R
|p〉〈p| dp = I, we get

〈x|Q2|y〉 = y2〈x|y〉 = y2

Z

R

〈x|p〉〈p|y〉dp.
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Since 〈x|p〉 = eixp
√

2π
, we obtain

〈x|Q2|y〉 =

Z

R

y2eixpe−iyp dp

2π
.

For the momentum operator, P |p〉 = p|p〉. Therefore,

〈x|P 2|y〉 =

Z

〈x|P 2p〉〈p|y〉dp =

Z

R

p2〈x|p〉〈p|y〉 dp

2π
.

Hence 〈x|P 2|y〉 =
R

R
p2eip(x−y) dp

2π
. Summarizing,

〈x|H|y〉 =

Z

R

„

p2

2m
+

mω2y2

2

«

eip(x−y) dp

2π
=

Z

R

H(y, p)eip(x−y) dp

2π
.

Thus

〈x|I − iHΔt|y〉 =

Z

R

(1 − iH(y, p)Δt) eip(x−y) dp

2π
.

Finally,

〈x|e−iHΔt|y〉 =

Z

R

e−iH(y,p)Δt eip(x−y) dp

2π
,

up to terms of order (Δt)2. This finishes the formal proof of the claim.
(iii) The path integral: Consider first the case where N = 2. Set q0 := y and

q2 := x. By the product formula (7.173),

K(q2, t2; q0, t0) =

Z

R

K(q2, t2; q1, t1)K(q1, t1; q0, t0)dq1.

Using (7.174), we get the approximative formula

K(q2, t2; q0, t0) =

Z

R3
eiS2 dq1 ·

dp1

2π
· dp0

2π
(7.175)

with the discrete action

S2 :=
“

p1
q2 − q1

Δt
+ p0

q1 − q0

Δt
−H(q1, p1) −H(q0, p0)

”

Δt.

Now let N = 2, 3, . . .. Similarly, the product formula (7.173) yields

K(qN , tN ; q0, t0) =

Z

RN−1
dqN−1 · · · dq1

N
Y

n=1

K(qn, tn; qn−1, tn−1).

By (7.174), we obtain the approximative formula

K(qN , tN ; q0, t0) =

Z

R2N−1
eiSN

dp0

2π

N−1
Y

n=1

dqndpn

2π
(7.176)

with the discrete action

SN :=

N−1
X

n=0

“

pn
qn+1 − qn

Δt
−H(qn, pn)

”

Δt.

Finally, carry out the formal limit N → ∞ which implies Δt → 0. This way,
we get Feynman’s magic limit formula (7.171) which we mnemonically write
as (7.172).
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The path integral in the position space. Feynman’s magic formula (7.171)
can be simplified by integrating over the momentum variables p0, p1, ... This yields
the following modified magic formula

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq. (7.177)

Here, we integrate over all continuous paths q = q(τ), s ≤ τ ≤ t, in the position
space with

q(s) = y, q(t) = x

for given initial time s, initial point y, final time t, and final point x. Along this
path, we use the classical action

S[q] :=

Z t

s

˘

1
2
mq̇(τ)2 − U(q(τ))

¯

dτ.

Mnemonically, the magic formula (7.177) stands for the following formal limit

K(x, t; y, s) = lim
N→∞

1

l

Z

RN−1
eiSN /� dq1

l
· · · dqN−1

l
(7.178)

along with the discrete action

SN :=

N−1
X

n=0

j

m

2

“qn+1 − qn

Δt

”2

− U(qn)

ff

Δt,

and the characteristic length l :=
q

2π�iΔt
m

. Now let us motivate formula (7.178).

Set � := 1. Proceeding as above, formula (7.178) follows from the product formula

K(qN , tN ; q0, t0) =

Z

RN−1
dqN−1 · · · dq1

N
Y

n=1

K(qn, tn; qn−1, tn−1)

along with the approximation

K(x, s + Δt; y, s) = l−1eim(x−y)2/2Δt e−iU(y)Δt, (7.179)

up to terms of order (Δt)2. It remains to justify formula (7.179). To this end, use

K(x, s + Δt; y, s) = e−iU(y)Δt

Z

R

e−ip2Δt/2m eip(x−y) dp

2π
, (7.180)

by (7.174). Applying the Gaussian integral formula (7.161) on page 551 to (7.180),
we get the desired formula (7.179).

7.8 Finite-Dimensional Gaussian Integrals

The rigorous theory of finite-dimensional Gaussian integrals in classical
probability theory represents the prototype of the formal theory of infinite-
dimensional Gaussian integrals, which play a crucial role for describing
correlations in quantum field theory.
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In order to understand the formal properties of infinite-dimensional Gaus-
sian integrals, write the well-defined N -dimensional Gaussian integrals in
such a way that the formal limit N → ∞ can be easily performed.

Folklore

Path integrals (or more general functional integrals) can be computed by regarding
them as infinite-dimensional Gaussian integrals. To discuss this, in the present
section we are going to study finite-dimensional Gaussian integrals. In the next
section, we will generalize this to the infinite-dimensional case. Note that

• free systems (i.e., systems without any interaction) correspond to standard Gaus-
sian integrals, whereas

• interacting systems are described by the perturbation of standard Gaussian in-
tegrals.

In the framework of perturbation theory, the computation of perturbed Gaussian
integrals can be reduced to the computation of moments for standard Gaussian
integrals. Analytically, this can be based on the Wick theorem. Graphically, this
corresponds to Feynman diagrams.

7.8.1 Basic Formulas

One-dimensional Gaussian integrals. The starting point is the integral

Z

R

e−x2
dx =

√
π. (7.181)

This formula elegantly follows from
R

R
e−x2

dx
R

R
e−y2

dy =
R

R2 e−x2−y2
dxdy. Pass-

ing to polar coordinates, the latter integral is equal to

2π

Z ∞

0

e−r2
rdr = −πe−r2

|∞0 = π.

(i) Rescaling: Using translation and rescaling, for all a > 0 and x0 ∈ R , we get

Z

R

e−
1
2

a(x−x0)2 dx√
2π

=
1√
a

.

(ii) Quadratic supplement: Using (i) and setting b := ax0, we obtain

Z

R

e−
1
2

ax2
ebx dx√

2π
=

eb2/2a

√
a

(7.182)

for all a > 0 and b ∈ R. The reduction process from (7.182) to (i) is called the
method of the quadratic supplement.

(iii) Analytic continuation: Introduce the set

Ω := {(a, b) ∈ C
2 : a = reiϕ, r > 0, −π < ϕ < π}.

For all (a, b) ∈ Ω, the function

F (a, b) :=
eb2/2a

√
a
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is well defined. Here, the square root is to be understood in the sense of the
principal value, that is,

√
a :=

√
r eiϕ/2. In fact, the function F : Ω → C is

holomorphic. We define

Z

R

e−
1
2

ax2
ebx dx√

2π
:= F (a, b) for all (a, b) ∈ Ω. (7.183)

This definition is based on the idea of analytic continuation. For example,

Z

R

eix2 dx√
2π

:=
1√
−2i

=
eiπ/4

√
2

=
1 + i

2
. (7.184)

This Fresnel integral exists in the classical sense.91 In the special case where
�(a) > 0 and b ∈ C, relation (7.183) is always valid in the classical sense (i.e.,
the integral exists).92

(iv) Fourier transform: Let a > 0. Then it follows from (iii) that

1√
2π

Z

R

e−ax2/2 e−ipx dx =
e−p2/2a

√
a

for all p ∈ R.

In the special case where a = 1, this relation shows that the Gaussian function

x �→ e−x2/2 is a fixed point of the Fourier transform.
(v) The method of stationary phase: Let us introduce the so-called phase function

Φ(x) := − 1
2
ax2 + bx. The equation

Φ′(x) = −ax + b = 0

has the unique solution xcrit := b/a. For this point, the phase function Φ
becomes stationary. Relation (7.183) can be written as

Z

R

eΦ(x) dx√
2π

=
eΦ(xcrit)

√
a

for all (a, b) ∈ Ω.

This so-called method of stationary phase tells us that the integral is deter-
mined by the integrand at the stationary point xcrit, up to a normalization
constant.

(vi) Adiabatic regularization: Let f : R → C be a bounded function, that is,
supx∈R

|f(x)| < ∞, which is continuous (or continuous up to a set of Lebesgue
measure zero). Then the integral

Z

R

f(x)e−
1
2

εx2
dx, ε > 0

exists, which is called the adiabatic regularization of the integral
R

R
f(x)dx.

For example, let α ∈ R, b ∈ C, and let ε > 0. Then the integral

91 For the computation of this integral by using Cauchy’s residue method, we refer
to page 734 of Vol. I.

92 Here, |e−
1
2

ax2
ebx| = e−

1
2
�(a)x2

e�(b)x for all x ∈ R. Both the existence of the
integral from (7.183) and its analytic dependence on the parameters a and b
follow then from the majorant criterion for integrals (see Vol. I, p. 493).
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Z

R

„

e−
1
2

αix2
ebx

«

e−
1
2

εx2 dx√
2π

=
eb2/2(ε+αi)

√
ε + αi

exists. If α �= 0, then we have the limit relation

lim
ε→+0

Z

R

e−
1
2

αix2
ebxe−

1
2

εx2 dx√
2π

=

Z

R

e−
1
2

αix2
ebx dx√

2π
=

eb2/2αi

√
αi

.

(vii) Moments and the Wick trick: Let a > 0. We want to compute the moments

〈xk〉 :=

R

R
xke−

1
2

ax2 dx√
2π

R

R
e−

1
2

ax2 dx√
2π

, k = 0, 1, 2, . . .

To this end, for J ∈ C, we introduce the so-called generating function

Z(J) :=

R

R
e−

1
2

ax2
eJx dx√

2π

R

R
e−

1
2

ax2 dx√
2π

= eJ2/2a.

Differentiation yields Z′(0) = 〈x〉. More generally,

〈xk〉 =
dkZ(0)

dJk
, k = 0, 1, 2 . . . (7.185)

For example,
〈x〉 = Z′(0) = 0, 〈x2〉 = Z′′(0) = a−1.

Note that if �(a) > 0, then the integrals M0, M1, M2, . . . exist, and the Wick
trick formula (7.185) holds true, by the majorant criterion (see Vol. I, p. 493).
The entire function Z : C → C has the power series expansion

Z(J) = M0 + M1J +
M2J

2

2!
+

M3J
3

3!
+ . . .

N-dimensional Gaussian integrals. In what follows, we choose the dimen-
sions N = 1, 2, . . . All the square roots are to be understood as principal values.
Let (λk, bk) ∈ Ω be given for k = 1, . . . , N. The prototype is the definition

Z

RN

N
Y

k=1

e−
1
2

λkx2
k+bkxk

dxk√
2π

:=

N
Y

k=1

Z

R

e−
1
2

λkx2+bkx dx√
2π

=

N
Y

k=1

eb2k/2λk

√
λk

.

(7.186)

The integrals are to be understood in the generalized sense. However, if �(λk) > 0
for k = 1, . . . , N , then the integrals exist, and relation (7.186) is to be understood
in the classical sense. We make the following assumption.

(H) All the eigenvalues of the real symmetric (N×N)-matrix A = (akl) are positive,
that is, λ1 > 0, . . . , λN > 0.
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Then det A = λ1λ2 · · ·λN . By definition, the zeta function of the matrix A reads
as

ζA(s) :=
N
X

k=1

1

λs
k

for all s ∈ C.

For all x, y ∈ R
N and all b ∈ C

N , we set

〈y|Ax〉 :=
N
X

k,l=1

ykaklxl, 〈b|x〉 :=
N
X

k=1

bkxk.

Since λ−s
k = e−s ln λk , we obtain the derivative

ζ′
A(s) = −

N
X

k=1

ln λk

λs
k

, s ∈ C.

This implies the key formula

det A =

N
Y

k=1

λk = e−ζ′
A(0). (7.187)

The following properties of finite-dimensional Gaussian integrals are crucial for the
theory of infinite-dimensional Gaussian integrals.

(i) The standard Gaussian integral: For all y ∈ R
N , we have

Z

RN

e−
1
2
〈(x−y)|A(x−y)〉 dx1√

2π
· · · dxN√

2π
=

1√
det A

.

Proof. After a translation, we can choose y = 0. By the principal axis theorem
on the real Hilbert space R

N , there exists an orthogonal transformation which
sends the integral to the normal form (7.186) with bk = 0 for all k. �

(ii) Quadratic supplement: For all b ∈ R
N , we have

Z

RN

e−
1
2
〈x|Ax〉 e〈b|x〉

dx1√
2π

· · · dxN√
2π

=
e

1
2
〈b|A−1b〉
√

det A
. (7.188)

This can be written as
Z

RN

e−
1
2
〈x|Ax〉 e〈b|x〉

dx1√
2π

· · · dxN√
2π

= e
1
2
〈b|A−1b〉 e

1
2

ζ′
A(0). (7.189)

Proof. This is an easy consequence of (i) above. Since A is symmetric, we get

〈(x − y)|A(x − y)〉 = 〈x|Ax〉 − 〈y|Ax〉 − 〈x|Ay〉 + 〈y|Ay〉
= 〈x|Ax〉 − 2〈Ay|x〉 + 〈Ay|y〉.

Finally, set b := Ay. By (i), the integral on the left-hand side of (7.188) is equal
to

e
1
2
〈Ay|y〉

√
det A

.

Finally, observe that y = A−1b. Hence 〈Ay|y〉 = 〈b|A−1b〉. �



564 7. Quantization of the Harmonic Oscillator

(iii) Analytic continuation: Let γ be a nonzero complex number with the argument
−π < arg(γ) < π (e.g., γ = ±i). Then, for all b ∈ C

N , we define

Z

RN

e−
1
2

γ〈x|Ax〉 e〈b|x〉
dx1√
2π

· · · dxN√
2π

:=
e

1
2
〈b|(γA)−1b〉
p

det(γA)
. (7.190)

Here, the square root is to be understood as

p

det(γA) := (
√

γ)N
√

det A

where
√

γ is the principal value of the square root. Note that equation is valid
for all γ > 0, and the integral exists in the classical sense. Then we use analytic
continuation.

(iv) Adiabatic regularization: Let A and b be given as in (iii) above. Furthermore,
let α ∈ R and ε > 0. Then the integral

Z

RN

„

e−
1
2

αi〈x|Ax〉 e〈b|x〉
«

e−
1
2

ε〈x|x〉 dx1√
2π

· · · dxN√
2π

:=
e

1
2
〈b|(αiA+εI)−1b〉

p

det(αiA + εI)

exists. If α �= 0, then we have the limit relation

lim
ε→+0

Z

RN

„

e−
1
2

αi〈x|Ax〉 e〈b|x〉
«

e−
1
2

ε〈x|x〉 dx1√
2π

· · · dxN√
2π

=
e

1
2
〈b|(αiA)−1b〉
p

det(αiA)
.

(v) The method of stationary phase: Let A and b be given as in (iii) above. Intro-
duce the phase function Φ(x) := − 1

2
γ〈x|Ax〉 + 〈b|x〉. The equation

Φ′(x) = −γAx + b = 0

has the unique solution xcrit := (γA)−1b. Then relation (7.190) can be written
as

Z

Rn

eΦ(x) dx1

√
2π

· · · dxN

√
2π

=
eΦ(xcrit)

p

det(γA)
.

7.8.2 Free Moments, the Wick Theorem, and Feynman Diagrams

In what follows, we will use a terminology which fits best the needs of quantum
field theory. Our approach can be viewed as a discrete variant of quantum field
theory. The basic notions are:

• free probability distribution (also called the Gaussian distribution in mathemat-
ics),

• free moments (free n-correlation functions or, briefly, called free n-point func-
tions),

• generating function of the free moments,
• Feynman diagrams (i.e., graphic representation of free moments).

In the next section, we will generalize this to full probability distributions and full
moments.
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In terms of discrete quantum field theory, full moments (resp. free mo-
ments) describe particles under interaction (resp. free particles without any
interaction).

Moments are fundamental quantities. The theory of moments in probability theory
tells us that, roughly speaking, a probability distribution is uniquely determined
by the knowledge of its moments (see Vol. I, page 751). Our main task is to reduce
the computation of full moments to the computation of free moments. This is the
basic trick of perturbation theory in quantum field theory.

The free probability distribution. Assume that the matrix A has the prop-
erty (H) formulated on page 562. Introduce the key quantity

�(x) :=
e−

1
2
〈x|Ax〉

R

RN e−
1
2
〈x|Ax〉dx1 · · · dxN

, x ∈ R
N .

This is called the free probability density. The function F : R
N → R given by

F (x) :=

Z x

−∞
�(y)dy

is called the free probability distribution (or Gaussian distribution).
Free Moments. Choose the indices k1, k2, . . . , kn = 1, 2, . . ., and fix the posi-

tive integer n = 1, 2, . . . Define

〈xk1xk2 · · ·xkn〉 :=

Z

RN

xk1xk2 · · ·xkn · �(x)dx1 · · · dxN .

These expectation values are called the moments of the probability density � (or,
briefly, the free moments). We also use the notation93

Cn,free(xk1 , xk2 , . . . , xkn) := 〈xk1xk2 · · ·xkn〉,

and we call Cn,free a free discrete n-correlation function (or a free n-point function).
Explicitly, we get94

〈xk1xk2 · · ·xkn〉 :=

R

RN xk1xk2 · · ·xkne−
1
2
〈x|Ax〉 dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉 dx1√

2π
· · · dxN√

2π

.

The trick of the generating function. For all J ∈ R
N , introduce the so-

called generating function

Zfree(J) :=

Z

RN

�(x)e〈J|x〉 dx1 · · · dxN .

Explicitly, we get

93 The value Cn,free(xk1 , xk2 , . . . , xkn) only depends on the indices k1, k2, . . . , kn.
However, mnemonically, our notation is convenient for the passage to quantum
field theory. Then we can use the same notation for the continuously varying
variables xk1 , xk2 , . . . , xkn .

94 We introduce the rescaled differential dxk√
2π

in order to prepare the limit N → ∞
to path integrals (infinite-dimensional Gaussian integrals) later on.
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Zfree(J) :=

R

RN e−
1
2
〈x|Ax〉 e〈J|x〉 dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉 dx1√

2π
· · · dxN√

2π

= e
1
2
〈J|A−1J〉.

Differentiation with respect to J yields

〈xk1xk2 · · ·xkn〉 =
∂n

∂Jk1∂Jk2 · · · ∂Jkn

e
1
2
〈J|A−1J〉, (7.191)

by setting J = 0 after differentiation. In particular, for the free 2-point function we
get

〈xkxl〉 = (A−1)kl, k, l = 1, . . . , N

where (A−1)kl is the entry of the inverse matrix A−1 located in the kth row and in
the lth column.

Theorem 7.46 Let k1, . . . , kn = 1, 2, . . . N. If n is even, then

〈xk1xk2 · · ·xkn〉 =
X

〈xi1xi2〉〈xi3xi4〉 · · · 〈xin−1xin〉.

Here, we sum over all possible pairings of the indices k1, k2, . . . , kn. If n is odd, then
〈xk1xk2 · · ·xkn〉 = 0.

This so-called Wick theorem tells us that the Gaussian distribution has the
following important property: the 2-point function determines all the other n-point
functions.
Proof. Observe that the function J �→ 〈J |A−1J〉 is quadratic. If n is even, then
use (7.191) together with the chain rule. If n is odd, then note that the function
(x1, x2, x3) �→ x1x2x3 is odd, and so on. �

Feynman diagrams. For example, the Wick theorem tells us that

〈x1x2x3x4〉 = 〈x1 x2 x3 x4〉 + 〈x1x2 x3x4 〉 + 〈x1 x2 x3 x4〉. (7.192)

That is, we sum over all possible fully contracted symbols. Explicitly, this means

〈x1x2x3x4〉 = 〈x1x2〉〈x3x4〉 + 〈x1x3〉〈x2x4〉 + 〈x1x4〉〈x2x3〉.

This is graphically represented in Table 7.1(c) by using so-called Feynman diagrams.
Here, the contractions correspond to connections of the vertices. Similarly, we get

〈x1x1x3x4〉 = 〈x1 x1 x3 x4〉 + 〈x1x1 x3x4 〉 + 〈x1 x1 x3 x4〉. (7.193)

This is graphically represented in Table 7.1(d). Naturally enough, the diagram
corresponding to 〈x1x1〉 is called a loop. Analogously,

〈x4
1x

2
2〉 = 3〈x2

1〉2〈x2
2〉 + 12〈x2

1〉〈x1x2〉2. (7.194)

This is computed in Problem 7.33 (see Table 7.1(e)).
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Table 7.1. Feynman diagrams

(a) 〈x1x2〉 (b) 〈x1x1〉

x1 x2

x1

(c) 〈x1x2x3x4〉

x1 x2 x3 x4
+

x1 x3 x2 x4
+

x1 x4 x2 x3

(d) 〈x1x1x3x4〉

x1

+ 2
x1

x3

x4

(e) 〈x1x1x1x1x2x2〉

3
x1 x2

+ 12
x1

x2

x2

7.8.3 Full Moments and Perturbation Theory

Distinguish strictly between free moments and full moments.
Folklore

Now we pass to probability distributions which are perturbations of Gaussian dis-
tributions. The strength of perturbation is measured by the coupling constant κ.
This way, free moments (resp. free n-point functions) are replaced by full moments
(resp. full n-point functions).

The full probability distribution under interaction. Assume that the
matrix A has the property (H) formulated on page 562. Let

U : R
N → R

be a polynomial with respect to the real variables x1, . . . , xN (e.g., we choose
U(x) := −〈x|x〉2). We are given the real nonnegative number κ called coupling
constant. Introduce

�κ(x) :=
e−

1
2
〈x|Ax〉eκU(x)

R

RN e−
1
2
〈x|Ax〉eκU(x)dx1 · · · dxN

, x ∈ R
N . (7.195)

This is called the full probability density, which depends on the coupling constant
κ. The function Fκ : R

N → R given by
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Fκ(x) :=

Z x

−∞
�κ(y)dy, x ∈ R

N

is called the full probability distribution (or perturbed Gaussian distribution). The
function κU measures the strength of the perturbation. As a rule, we will consider
the case where the coupling constant κ is small. We assume that the function �κ is
well defined, that is, the denominator of �κ in (7.195) is a finite integral. Note that
the free probability density corresponds to the case where the coupling constant
vanishes, κ = 0. Define

〈xk1xk2 · · ·xkn〉full :=

Z

RN

xk1xk2 · · ·xkn · �κ(x)dx1 · · · dxN .

These expectation values are called the full moments. We also use the notation

Cn,full(xk1 , xk2 , . . . , xkn) := 〈xk1xk2 · · ·xkn〉full,

and we call Cn,full a full discrete n-correlation function (or a full n-point function).
Explicitly, we get

〈xk1xk2 · · ·xkn〉full :=

R

RN xk1xk2 · · ·xkne−
1
2
〈x|Ax〉 eκU(x) dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉eκU(x) dx1√

2π
· · · dxN√

2π

.

For all J ∈ R
N , introduce the full generating function

Zfull(J) :=

Z

RN

�κ(x) e〈J|x〉 dx1 · · · dxN .

Explicitly,

Zfull(J) =

R

RN e−
1
2
〈x|Ax〉 eκU(x) e〈J|x〉 dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉 eκU(x) dx1√

2π
· · · dxN√

2π

.

Differentiation with respect to J yields

〈xk1xk2 · · ·xkn〉full =
∂nZfull(0)

∂Jk1∂Jk2 · · · ∂Jkn

. (7.196)

By Taylor expansion,

Zfull(J) = 1 +

∞
X

n=1

X

r1+r2+...+rN=n

〈xr1
1 xr2

2 · · ·xrN
N 〉full

r1!r2! · · · rN !
Jr1

1 Jr2
2 · · · JrN

N .

Perturbation theory. We want to compute the following full moment:

〈xk1xk2 · · ·xkn〉full =

R

RN xk1xk2 · · ·xkne−
1
2
〈x|Ax〉 eκU(x) dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉eκU(x) dx1√

2π
· · · dxN√

2π

where U is a polynomial.To this end, we start with the Taylor expansion

eκU = 1 + κU + 1
2
κ2U2 + . . .
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Setting a :=
R

RN e−
1
2
〈x|Ax〉 dx1√

2π
· · · dxN√

2π
, we get

Z

RN

e−
1
2
〈x|Ax〉eκU(x) dx1√

2π
· · · dxN√

2π
= a

`

1 + κ〈U(x)〉 + 1
2
κ2〈U(x)2〉 + . . .

´

.

Similarly, the integral
Z

RN

xk1 · · ·xkne−
1
2
〈x|Ax〉eκU(x) dx1√

2π
· · · dxN√

2π

is equal to

a(〈xk1 · · ·xkn〉 + κ〈xk1 · · ·xknU(x)〉 + 1
2
κ2〈xk1 · · ·xknU(x)2〉 + . . .).

Hence

〈xk1 · · ·xkn〉full = 〈xk1 · · ·xkn〉 + κ
`

〈xk1 · · ·xknU(x)〉 − 〈U(x)〉
´

. . .

Here, the dots stand for terms of order O(κ2) as κ → 0. Since U(x) is a polyno-
mial with respect to x1, . . . , xn, the right-hand side only contains free moments.
Therefore the Wick theorem tells us that

The computation of full moments can be reduced to the computation of the
special free moments 〈xixj〉.

This is the secret behind the success of perturbation theory in quantum field theory.
For example, let N ≥ 2. Choose U(x) := x4

1. Then 〈U(x)〉 = 3〈x2
1〉2. By (7.194), we

get
〈x2

2〉full = 〈x2〉2 + κ
`

3〈x2
1〉2〈x2

2〉 + 12〈x2
1〉〈x1x2〉2 − 3〈x2

1〉2
´

+ O(κ2)

as κ → 0.
The reduced full moments (cumulants). In order to avoid redundant ex-

pressions, let us introduce the reduced full generating function

Zfull,red(J) := ln Zfull(J).

Then

Zfull(J) = eZfull,red(J). (7.197)

By definition, Zfull,red is the generating function for the so-called reduced full mo-
ments:95

〈xk1xk2 . . . xkn〉full,red :=
∂nZfull,red(0)

∂Jk1∂Jk2 · · · ∂Jkn

.

Hence

Zfull,red(J) = 1 +

∞
X

n=1

X

r1+r2+...+rN=n

〈xr1
1 xr2

2 · · ·xrN
N 〉full,red

r1!r2! · · · rN !
Jr1

1 Jr2
2 · · · JrN

N .

Using Taylor expansion with respect to κ, it follows from (7.197) that

The full moments can be uniquely computed by means of the reduced full
moments.

95 In mathematics, reduced moments are also called cumulants.
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In the special free case where κ = 0, we obtain

Zfree,red(J) = ln Zfree(J) = ln e
1
2
〈J|A−1J〉 = 1

2
〈J |A−1J〉.

Hence
〈xkxl〉free red = 〈xkxl〉, k, l = 1, . . . , N.

The remaining reduced free moments are equal to zero. This implies the following
result.

The reduced full generating function satisfies the relation

Zfull,red(J) = Zfree,red(J) + O(κ) = 1 +

N
X

i,k=1

1
2
〈xixk〉JiJk + O(κ)

as κ → 0. Therefore, the function Zfull,red describes the perturbation of the second
free moments, under the influence of the coupling constant κ. In contrast to this,
the formula

Zfull(J) = Zfree(J) + O(κ), κ → 0

is full of redundance, since the function Zfree is redundant compared with Zfree,red.
This is why physicists use reduced full correlation (or n-point) functions in quantum
field theory.

7.9 Rigorous Infinite-Dimensional Gaussian Integrals

The definition of infinite-dimensional Gaussian integrals depends on the
spectrum of the linear symmetric dispersion operator.

Folklore

In order to explain the basic idea, let us start with the finite-dimensional key formula
Z

RN

e−
1
2 (λ1x2

1+...+λ2
N x2

N )eb1x1+...+bN xN
dx1√
2π

. . .
dxN√

2π
= BN

where

BN :=
e

1
2
PN

k=1 b2kλ−1
k

“

QN
k=1 λk

”1/2
.

Here, N = 1, 2, . . .. Furthermore, we assume that λ1, λ2, . . . are positive numbers,
and b1, b2 . . . are real numbers. Now we want to study the limit N → ∞. Obviously,
we have the following result.

Proposition 7.47 Suppose that
P∞

k=1 b2
kλ−1

k < ∞ and 0 <
Q∞

k=1 λk < ∞. Then
the following limit

lim
N→∞

Z

RN

e−
1
2 (λ1x2

1+...+λ2
N x2

N ) eb1x1+...+bN xN
dx1√
2π

. . .
dxN√

2π
=

e
1
2
P∞

k=1 b2kλ−1
k

`

Q∞
k=1 λk

´1/2

exists in the classical sense. We briefly write

Z

R∞
e−

1
2
P∞

k=1 λkx2
k e

P∞
k=1 bkxk

∞
Y

k=1

dxk√
2π

:=
e

1
2

P∞
k=1 b2kλ−1

k

`

Q∞
k=1 λk

´1/2
.

We call this a normalized infinite-dimensional Gaussian integral.
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7.9.1 The Infinite-Dimensional Dispersion Operator

We want to generalize the preceding formulas. To this end, we are given the linear
symmetric operator

A : D(A) → X

defined on the linear dense subspace D(A) of the real infinite-dimensional separable
Hilbert space X. Assume that we have the eigenvector equation

Aϕk = λkϕk, k = 1, 2, . . .

where λk > 0 for all k, and the eigenvectors ϕ1, ϕ2 . . . form a complete orthonormal
system of the Hilbert space X (together with ϕk ∈ D(A) for all k). Then we obtain
b =

P∞
k=1〈b|ϕk〉ϕk for all b ∈ X, and

Aϕ =

∞
X

k=1

λk〈ϕ|ϕk〉ϕk for all ϕ ∈ D(A).

This implies 〈ϕ|Aϕ〉 =
P∞

k=1 λk〈ϕk|ϕ〉2. If Aϕ = 0, then ϕ = 0. Thus the operator

A is injective, and the inverse operator A−1 : D(A−1) → X exists with

A−1ϕk = λ−1
k ϕk, k = 1, 2, . . .

In particular, we get D(A−1) ⊆ D(A), and

〈b|A−1b〉 =
∞
X

k=1

λ−1
k 〈b|ϕk〉2 for all b ∈ D(A).

Furthermore, for the dispersion operator A, we define

• the trace tr A :=
P∞

k=1 λk,
• the determinant det A :=

Q∞
k=1 λk, and

• the zeta function ζA(s) =
P∞

k=1 λ−s
k for suitable complex numbers s.

If the trace is finite, that is tr(A) < ∞, then

det A = etr A.

In what follows, we are given b ∈ D(A). We have to distinguish the following two
cases.

(C1) Regular case: 0 < det A < ∞ (the determinant exists).
(C2) Singular case: det A = ∞ (the determinant does not exist in the usual sense).

Regular case. Here, we define the normalized infinite-dimensional Gaussian
integral by setting

Z

D(A)

e−
1
2 〈ϕ|Aϕ〉e〈b|ϕ〉DGϕ :=

e
1
2 〈b|A−1b〉
√

det A
. (7.198)

Observe that in concrete situations, the domain of definition D(A) of the operator A
describes boundary conditions. Changing the boundary conditions means changing
the operator A and its eigenvalues. Since the determinant det A depends on the
eigenvalues, the integral depends on the domain of definition D(A). Now let us
study the singular case which is typically encountered in quantum physics.
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7.9.2 Zeta Function Regularization and Infinite-Dimensional
Determinants

The definition ln det A := −ζ′
A(0) was first used by the mathemati-

cians Ray and Singer (1971), when they tried to give a definition of the
Reidemeister–Franz torsion in analytic terms. . . Later zeta function regu-
larization was used by physicists in the context of dimensional regulariza-
tion when applied to quantum field theory in curved space-time.96

Klaus Kirsten, 2002

It is our goal to use (7.198) and to redefine the determinant det A by means of the
zeta function ζA together with analytic continuation.

Singular case. Motivated by (7.187), the key formula reads as

det A = e−ζ′
A(0). (7.199)

Let us assume the following:

(H) The zeta function ζA(s) =
P∞

n=1 λ−s
n converges for all sufficiently

large positive real numbers s, and it can be analytically continued to some
neighborhood of the point s = 0 in the complex plane.

Here, we define the determinant det A of the operator A by (7.199). This gener-
ates the definition of the normalized infinite-dimensional Gaussian integral in the
singular case:

Z

D(A)

e−
1
2 〈ϕ|Aϕ〉e〈b|ϕ〉DGϕ := e

1
2 〈b|A−1b〉 e

1
2 ζ′

A(0). (7.200)

The rescaling trick. Let γ be a nonzero complex number with the property
−π < arg(γ) < π, and assume (H). We define the normalized infinite-dimensional
Gaussian integral by setting

Z

D(A)

e−
1
2 γ〈ϕ|Aϕ〉e〈b|ϕ〉DGϕ := e−

1
2 ζA(0) ln γ · e

1
2 γ−1〈b|A−1b〉
√

det A
(7.201)

with
√

det A := e−
1
2 ζ′

A(0), and ln γ is the principal value of the logarithm. Definition
(7.201) is crucial for quantum physics, as we will show in the next section. In order
to motivate (7.201), observe first that the following hold.

Proposition 7.48 Let γ > 0. Assume that the hypothesis (H) above is valid. Then

det(γA) = γζA(0) det A.

96 K. Kirsten, Spectral Functions in Mathematics and Physics, Chapman, Boca
Raton, Florida, 2002 (see also the hints for further reading on page 671).
D. Ray and I. Singer, Reidemeister torsion and the Laplacian on Riemann man-
ifolds, Advances in Math. 7, (1971) 145–210.

It was independently proven by Werner Müller and Jeff Cheeger that the original
combinatorial definition of the Reidemeister–Franz torsion is equivalent to the
analytic definition:
W. Müller, Analytic torsion and Reidemeister torsion of Riemannian manifolds,
Advances in Math. 28 (1978), 233–305.
J. Cheeger (1979), Analytic torsion and the heat equation, Ann. Math. 109,
259–322.
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This generalizes the classical relation det(γA) = γN det A which is valid in
the N -dimensional Euclidean space with N = 1, 2, . . . The proof will be given in
Problem 7.34 by using Euler’s gamma function. Replacing A by γA it follows from
(7.200) that

Z

D(A)

e−
1
2 〈ϕ|(γA)ϕ〉e〈b|ϕ〉DGϕ :=

e
1
2 〈b|(γA)−1b〉
p

det(γA)
, γ > 0.

This yields (7.201) if γ > 0. For general complex numbers γ (outside the negative
real axis), the right-hand side of (7.201) makes sense after analytic continuation.

The quotient trick. Fortunately enough, in quantum field theory one fre-
quently encounters quotients of Gaussian integrals which dramatically simplifies
the approach. To illustrate this, note that, in the regular case, it follows from
(7.198) that

R

D(A)
e−

1
2 〈ϕ|Aϕ〉e〈b|ϕ〉DGϕ

R

D(A)
e−

1
2 〈ϕ|Aϕ〉DGϕ

:= e
1
2 〈b|A−1b〉. (7.202)

This expression is independent of the determinant det A. Therefore, we use this as
a definition for all dispersion operators A and all b ∈ D(A). This way, the use of
the critical determinant det A is completely avoided.

Example. Let m > 0. The following example will be used below in order to
study the free quantum particle on the real line. Consider the quadratic form

S[r] := 1
2
m〈r|Ar〉, r ∈ D(A)

with the linear differential operator A : D(A) → X given by

Ar := − d2r

dτ2
, r ∈ D(A).

Here, X is the real Hilbert space L2(R), and the domain of definition D(A) consists
of all twice continuously differentiable functions r : [s, t] → R with r(s) = r(t) = 0.
We write C2

0 [s, t] instead of D(A). Integration by parts yields

S[r] = −
Z t

s

1
2
mr(τ)r̈(τ)dτ =

Z t

s

1
2
mṙ(τ)2 dτ

for all r ∈ C2
0 [s, t]. This is the action of a free quantum particle on the real line

with the boundary condition r(s) = r(t) = 0.

Proposition 7.49 There holds
R

C2
0 [s,t]

eiS[r]/� DGr = 1√
2(t−s)

`

m
�

´1/4
e−iπ/8.

Proof. To simplify notation, set s := 0. The crucial eigenvalue problem

Aϕ = λϕ, ϕ ∈ D(A)

corresponds to the equation −ϕ̈(τ) = λϕ(τ), 0 < τ < t with the boundary condition
ϕ(0) = ϕ(t) = 0. The solutions are

ϕn(τ) := const · sin
√

λnτ, λn :=
“nπ

t

”2

, n = 1, 2, . . .
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For all complex numbers z with �(z) > 1
2
, the zeta function ζA of the operator A

is given by the convergent series

ζA(z) =
∞
X

n=1

1

λz
n

=

„

t

π

«2z ∞
X

n=1

1

n2z
=

„

t

π

«2z

ζ(2z).

Here, ζ denotes the Riemann zeta function. Note that ζ can be analytically contin-
ued to a holomorphic function on the pointed plane C \ {1}. Here, ζ(0) = − 1

2
and

ζ′(0) = − 1
2

ln 2π. Hence ζA(0) = − 1
2

and

ζ′
A(0) = 2ζ(0)(ln t − ln π) + 2ζ′(0) = − ln 2t.

This implies det A = e−ζ′
A(0) = 2t. Set γ := m

�i
. By (7.201), the integral

R

C2
0 [0,t]

eiS[r]/� DGr is equal to

Z

C2
0 [0,t]

e−
1
2 γ〈r|Ar〉DGr =

e−
1
2 ζA(0) ln γ

√
det A

=
1√
2t

“m

�i

”1/4

.

This is the desired result. �

7.9.3 Application to the Free Quantum Particle

Consider the motion of a free quantum particle on the real line. In Theorem 7.16
on page 488, we have computed the corresponding Feynman propagator kernel

K(x, t; y, s) =

r

m

2π�i(t − s)
eim(x−y)2/2�(t−s) (7.203)

for all positions x, y ∈ R and all times t > s.97 In addition, we have shown that the
dynamics of the free quantum particle is governed by the formula

ψ(x, t) :=

Z

R

K(x, t; y, s)ψ(y, s) dy, x ∈ R, t > s. (7.204)

If we know the Schrödinger wave function ψ of the free particle at time s, then the
kernel formula (7.204) tells us how to obtain the wave function at the later time t.
This explains the importance of the Feynman propagator kernel. In Prop. 7.44 on
page 550, we have proved that

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq.

That is, the Feynman propagator kernel can be represented by a Feynman path
integral. In this section, it is our goal to prove that

97 Recall that the square root is to be understood as principal value. Explicitly,

r

m

2π�i(t − s)
= e−iπ/4

r

m

2π�(t − s)
.
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K(x, t; y, s) = N
Z

C{s,t}
eiS[q]/� DGq.

This implies the key formula

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq = N

Z

C{s,t}
eiS[q]/� DGq (7.205)

for all positions x, y ∈ R and all times t > s. This formula tells us the crucial
fact that the Feynman path integral coincides with the corresponding normalized
infinite-dimensional Gaussian integral, up to some normalization factor N . Explic-

itly, N =
`

m
π2�

´1/4
e−iπ/8.

The classical trajectory. The action of a classical free particle of mass m on
the real line is given by

S[q] :=

Z t

s

1
2
mq̇(τ)2 dτ.

The boundary-value problem

mq̈(τ) = 0, s < τ < t, q(s) = y, q(t) = x

corresponds to the motion of the particle with given endpoints. The unique solution
is qclass(τ) = y + τ−s

t−s
(x − y) with the classical action

S[qclass] =

Z t

s

1
2
mq̇class(τ)2dτ =

m(x − y)2

2(t − s)
.

Quantum fluctuations and the WKB relation. In order to study pertur-
bations of the classical trajectory, we consider the trajectories

q(τ) = qclass(τ) + r(τ), τ ∈ [s, t]

where r ∈ C2
0 [s, t], that is, the function r : [s, t] → R is twice continuously differ-

entiable and satisfies the boundary condition r(s) = r(t) = 0. By (7.159) on page
550,

S[q] = S[qclass] + S[r]. (7.206)

For the Feynman propagator kernel, it follows from (7.203) that

K(x, t; y, s) = eiS[qclass]/� Kfluct(t; s) (7.207)

for all positions x, y ∈ R and all times t > s, with the fluctuation term

Kfluct(t; s) :=

r

m

2π�i(t − s)
.

Equation (7.207) is called the WKB relation for the free quantum particle. It shows

that the Feynman propagator is the product of the purely classical factor eiS[qclass]/�

with a factor caused by quantum fluctuations.
The key relation. Motivated by the decomposition formula (7.206), we define

Z

C{s,t}
eiS[q]/� DGq := eiS[qclass]/�

Z

C2
0 [s,t]

eiS[r]/� DGr.
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Prop. 7.49 on page 573 tells us that

Z

C2
0 [s,t]

eiS[r]/� DGr =
Kfluct(t; s)

N

with the normalization constant N =
`

m
π2�

´1/4
e−iπ/8. This implies the key formula

(7.205).

7.9.4 Application to the Quantized Harmonic Oscillator

Parallel to the free quantum particle in the preceding section, let us now study
the harmonic oscillator of mass m > 0 and angular frequency ω > 0 on the real

line. Introduce the characteristic length x0 :=
q

�

mω
. Furthermore, choose the time

parameter in such a way that

t ∈ ]s + tn,crit, s + tn+1,crit[, n = 0, 1, 2, ... (7.208)

Here, the critical points of time are defined by tn,crit := nπ
ω

. In addition, we intro-
duce the Maslov index by μ(s, t) := n. By formula (7.144) on page 537, we have
computed the Feynman propagator kernel for the quantized harmonic oscillator:

K(x, t; y, s) =
e−iπ/4 e−iπμ(s,t)/2

x0

p

2π| sin ω(t − s)|
exp

„

i
(x2 + y2) cos ω(t − s) − 2xy

2x2
0 sin ω(t − s)

«

.

This formula is valid for all all positions x, y ∈ R and all non-critical times t > s
from (7.208).

The classical trajectory. The action of the classical harmonic oscillator is
given by

S[q] :=

Z t

s

1
2
mq̇(τ)2 − 1

2
mω2q(τ)2 dτ.

The boundary-value problem

q̈(τ) + ω2q(τ) = 0, s < τ < t, q(s) = y, q(t) = x (7.209)

has the solution qclass(τ) = y cos ω(τ − s) +
`

x − y cos ω(τ − s)
´ sin ω(τ−s)

sin ω(t−s)
. This is

a classical trajectory with the action

S[qclass] = � · (x2 + y2) cos ω(t − s) − 2xy

2x2
0 sin ω(t − s)

.

Note that the trajectory qclass is the unique solution of (7.209) if t is a non-critical
point of time. The uniqueness is violated for critical points of time. In what follows,
we only consider non-critical points of time (7.208).

Quantum fluctuations and the WKB relation. Now use the perturbed
trajectory

q(t) = qclass(τ) + r(τ), τ ∈ [s, t],

where r ∈ C2
0 [s, t], that is, the function r : [s, t] → R is twice continuously differ-

entiable and satisfies the boundary condition r(s) = r(t) = 0. By (7.165) on page
552, we get
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S[q] = S[qclass] + S[r]. (7.210)

The Feynman propagator kernel for the quantized harmonic oscillator can be writ-
ten as

K(x, t; y, s) = eiS[qclass]/� Kfluct(t; s) (7.211)

with the quantum fluctuation term

Kfluct(t; s) :=
e−iπ/4 e−iπμ(s,t)/2

x0

p

2π| sin ω(t − s)|
.

This is a special case of the WKB method (see (7.216) on page 581). Observe that
the fluctuation term is independent of the position coordinates x and y.

Now we restrict ourselves to the first critical time interval, that is, we
assume that t ∈ ]s, s + t1,crit[.

Our goal is the key relation (7.214) below. Let us first compute the following nor-
malized infinite-dimensional Gaussian integral.

Proposition 7.50 For all times t ∈]s, s + t1,crit[, we have

Z

C2
0 [s,t]

eiS[r]/� DGr =
Kfluct(t; s)

N (ω)
. (7.212)

The complex non-zero constant N (ω) will be determined below.

Proof. We will proceed as in the proof of Prop. 7.49 on page 573. To simplify
notation, set s := 0. For r ∈ C2

0 [0, t], integration by parts yields

iS[r]

�
=

im

2�

Z t

0

r(τ)
`

−r̈(τ) − ω2r(τ)
´

dτ = − 1
2
γ〈r|Br〉

with γ := m
�i

. Here, we introduce the differential operator B : D(B) → L2(R) with

Br := − d2r

dτ2
− ω2r2

and the domain of definition D(B) := C2
0 [0, t].

(I) The infinite-dimensional Gaussian integral. By (7.201) on page 572, we get

Z

C2
0 [0,t]

e−
1
2 γ〈r|Br〉DGr :=

e−
1
2 ζB(0) ln γ

√
det B

. (7.213)

We have to compute the determinant det B = e−ζ′
B(0).

(II) The eigenvalues. The crucial eigenvalue problem

Bϕ = λϕ, ϕ ∈ D(B)

corresponds to the equation −ϕ̈(τ)−ω2q(τ) = λϕ(τ), 0 < τ < t with the boundary
condition ϕ(0) = ϕ(t) = 0. The solutions are

ϕn(τ) := const · sin
√

λnτ, λn :=
“nπ

t

”2

− ω2, n = 1, 2, . . .



578 7. Quantization of the Harmonic Oscillator

Let us also introduce μn :=
`

nπ
t

´2
which is obtained from λn by setting ω = 0.

(III) The zeta function: For all complex numbers z with �(z) > 1
2
, the zeta

function ζB of the operator B is given by the convergent series

ζB(z) =
∞
X

n=1

1

λz
n

=

„

t

π

«2z ∞
X

n=1

1
“

n2 − t2ω2

π2

”z .

Because of the boundary condition r(0) = r(t) = 0, the differential operator B can
be regarded as an elliptic differential operator on a circle, which is the simplest ex-
ample of a compact Riemannian manifold. There exists a general theory of elliptic
operators on compact Riemannian manifolds which tells us that the correspond-
ing zeta function can be analytically extended to a meromorphic function on the
complex plane, and this extension is holomorphic at the origin z = 0 (see Gilkey
(1995) and Kirsten (2002)). Therefore, ζB(0) and ζ′

B(0) are well-defined, and we can
use the method of zeta-function regularization. In order to get quickly an explicit
result, we will introduce a modified method which is used by physicists.

(IV) The determinant det B. Formally, we get

det B =

∞
Y

n=1

λn =

∞
Y

n=1

μn

∞
Y

n=1

„

1 − ω2

μn

«

.

By the classical Euler formula, we have the following convergent product

sin z = z
∞
Y

n=1

„

1 − z2

n2π2

«

, z ∈ C.

Hence det B = sin ωt
ωt

Q∞
n=1 μn. The product

Q∞
n=1 μn is divergent. In order to reg-

ularize det B it is sufficient to regularize
Q∞

n=1 μn. However, this product is the
determinant of the operator B with ω = 0 which coincides with the operator A
from the proof of Prop. 7.49 on page 573. By this proof, det A = 2t. Therefore, we
define

det B :=

 ∞
Y

n=1

μn

!

reg

∞
Y

n=1

„

1 − ω2

μn

«

= 2t · sin ωt

ωt
=

2 sin ωt

ω
.

(V) The constant N (ω). By (7.213), the integral
R

C2
0 [0,t]

eiS[r]/�DGr is equal to

e−
1
2 ζB(0) ln γ√ω√

2 sin ωt
=

Kfluct(t; 0)

N (ω)
=

e−iπ/4

N (ω)x0

√
2π sin ωt

,

where γ = m
�i

and x0 =
q

�

mω
. This yields N (ω) = e−iπ/4e

1
2 ζB(0) ln γ

p

m
π�

. �

The key relation. Motivated by the decomposition formula (7.210), we define

Z

C{s,t}
eiS[q]/� DGq := eiS[qclass]/�

Z

C2
0 [s,t]

eiS[r]/� DGr.

It follows from Prop. 7.50 together with (7.211) that

K(x, t; y, s) = N (ω)

Z

C{s,t}
eiS[q]/� DGq
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for all x, y ∈ R and all t ∈]s, s + t1,crit[. By Prop. 7.45 on page 552,

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq.

This implies the desired key relation

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq = N (ω)

Z

C{s,t}
eiS[q]/� DGq (7.214)

for all positions x, y ∈ R and all times t ∈ ]s, s+ t1,crit[. Observe that for ω = 0, the

normalization factor N (0) =
`

m
π2�

´1/4
e−iπ/8 is the same as for the free quantum

particle.
The free quantum particle as a limit. For all times t ∈]s, s+ t1,crit[ and all

positions x, y ∈ R, we have

K(x, t; y, s) =
1

x0

p

2πi sin ω(t − s)
exp

„

i
(x2 + y2) cos ω(t − s) − 2xy

2x2
0 sin ω(t − s)

«

.

Noting that limω→+0 x2
0 sin ω(t− s) = �(t−s)

m
limω→+0

sin ω(t−s)
ω(t−s)

= �(t−s)
m

, we obtain

the limit relation

lim
ω→+0

K(x, t; y, s) = Kfree(x, t; y, s) =

r

m

2π�i(t − s)
eim(x−y)2/2�(t−s).

This tells us the quite natural fact that the Feynman propagator kernel of the
quantized harmonic oscillator passes over to the Feynman propagator kernel of the
free quantum particle if the angular frequency ω goes to zero.

7.9.5 The Spectral Hypothesis

Motivated by the rigorous results above for the free quantum particle and the quan-
tized harmonic oscillator, we formulate the following general spectral hypothesis:

Z

C{s,t}
eiS[q]/� Dq = N

Z

C{s,t}
eiS[q]/� DGq. (7.215)

This hypothesis tells us that the Feynman path integral coincides with the corre-
sponding normalized infinite-dimensional Gaussian integral, up to a normalization
factor N which depends on the action functional S. Physicists take this spectral
hypothesis for granted in both quantum mechanics and quantum field theory. The
experience of physicists shows that this hypothesis works well as a universal tool.
In terms of mathematics, it turns out that this heuristic tool also works well for
conjecturing new topological invariants in the setting of topological quantum field
theory and string theory. For example, this concerns knot theory, smooth manifolds
in differential geometry, and algebraic varieties (generalized manifolds including sin-
gularities) in algebraic geometry.
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7.10 The Semi-Classical WKB Method

The WKB method in physics is the prototype of singular perturbation
theory in mathematics.

Folklore

To the best of our knowledge, the first paper on path integrals, apart from
Feynman’s, written by a physicist was submitted by Cécile Morette in
1950.98

During Pauli’s stay at the Institute for Advanced Study in 1949, Morette
and Van Hove presented to Pauli at the occasion of an appointment with
him a semiclassical formula (S) for quantum mechanics based on Morette’s
approach to path integrals. . . Pauli wrote a number of research notes . . . In
these notes Pauli corrected a sign factor, and he obtained the important
(exact) result that for small time intervals, the semiclassical propagator
kernel from (S) satisfies the Schrödinger equation up to order �

2 . . .
Pauli was, to the best of our knowledge, the first of the older generation,
having laid the foundations of quantum mechanics, who fully appreciated
the new approach developed by Feynman.99

Christian Grosche and Frank Steiner, 1998

Approximation methods play an important role in physics in order to simplify
computation and to get insight. Let us study an important approximation method
in quantum mechanics called the WKB method.100 The dynamics of a particle in
quantum mechanics is governed by the equation

ψ(t) = e−iH(t−s)/�ψ(s), t ≥ s.

The quantum particle behaves approximately like a classical particle if Planck’s
quantum of action is small, � → 0. More precisely, we have to assume that the
dimensionless quotient S/� is large where S is the action (energy times t− s). The
WKB method investigates the semi-classical approximation of quantum processes
with respect to the limit

� → 0.

The two key formulas for the motion of quantum particles in the 3-dimensional
Euclidean space read as follows:

(K) Time evolution of Schrödinger’s wave function:

ψ(x, t) =

Z

R3
K(x, t;y, s)ψ(y, s)d3y, x ∈ R

3, t > s.

We assume that the function y �→ ψ(y, s) is smooth with compact support (at
the initial time s).

98 C. Morette, On the definition and approximation of Feynman’s path integral,
Phys. Rev. 81 (1951), 848–852.

99 This slightly modified quotation is taken from C. Grosche and F. Steiner, Hand-
book of Feynman Path Integrals, Springer, Berlin, 1998 (reprinted with permis-
sion).

100 The three letters ‘WKB’ refer to the physicists ‘Wentzel, Kramers, and Brioullin’.
The basic papers are quoted on page 484.
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(a)

τ = s

y

�

τ = t

x

(b)

y

� x

�

�

Fig. 7.1. Classical trajectories

(A) Approximation of the propagator kernel as � → 0:

K(x, t;y, s) = eiS[q]/� e−3iπ/4 e−iπμ(s,t)/2

h3/2| det J(t)|1/2
(1 + O(�)). (7.216)

Here, S[q] is the action of the classical trajectory q = q(τ) which connects the
point y at the initial time s with the point x at the final time t (Fig. 7.1(a)).101

Furthermore, μ(s, t) denotes the Morse index (or Maslov index) of the trajectory
q = q(τ) on the time interval [s, t]. Roughly speaking, the Morse index measures
the number and the structure of the focal points on the trajectory. The use of the
Morse index allows us to obtain a global formula for large times. As a rule, the
Morse index jumps at focal points of the trajectory. Now let us discuss this more
precisely.102

Classical particle. We start with the Newtonian equation of motion

mq̈(τ) = −U ′(q), s ≤ τ ≤ t (7.217)

for the trajectory
C : q = q(τ), s ≤ τ ≤ t

of a classical particle of mass m in the 3-dimensional Euclidean space. The potential
U = U(q) is assumed to be a smooth real-valued function. The action along the
trajectory C is given by

S[q] :=

Z t

s

( 1
2
mq̇(τ)2 − U(q(τ))dτ.

For the trajectory C, we also study the corresponding Jacobi equation,

mJ̈(τ) + U ′′(q(τ))J(τ) = 0, s ≤ τ ≤ t,

along with the initial conditions J(s) = 0 and J̇(s) = m−1I.103

101 The case where several trajectories connect the point y with the point x will be
considered in (7.218) below. This corresponds to Fig. 7.1(b).

102 The WKB method is always used in physics if a typical physical parameter goes
to zero. For example, this concerns the following limits: T → 0 (low temperature),
λ → 0 (short wavelength), 1/c → 0 (low velocity), ν → 0 (low viscosity). In terms
of mathematics, the WKB method is part of singular perturbation theory.

103 Explicitly, for the real symmetric (3 × 3)-matrix J = (Jkl), we get

mJ̈kl(τ) +
3
X

r=1

∂2U

∂xk∂xr
(q(τ))Jrl(τ) = 0, k, l = 1, 2, 3.
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Morse index. By definition, the Morse index of the trajectory C is equal to
the number of negative eigenvalues λ of the Jacobi eigenvalue problem

−mḧ(τ) − U ′′(q(τ))h(τ) = λh(τ), s ≤ τ ≤ t

along with the boundary condition h(s) = h(t) = 0.
Quantum particle. The Schrödinger equation for the corresponding quantum

particle reads as

i�ψt(x, t) = − �
2

2m
Δψ(x, t) + U(x)ψ(x, t).

Semi-classical approximation. The approximation formula (7.216) is valid
under the following assumptions.104

(H1) Uniqueness: There exists a unique solution q = q(τ), s ≤ τ ≤ t, of the
classical equation of motion (7.217) which satisfies the boundary condition

q(s) = y, q(t) = x

for given y, t,x, s (Fig. 7.1(a) on page 581).
(H2) Regularity of the trajectory: At the final time t, the matrix J(t) is invertible.

Here, τ �→ J(τ) is the solution of the Jacobi equation with respect to the
trajectory from (H1).

Modifications. Replace (H1) by the assumption that the boundary value
problem has not a unique solution, but at most a finite number of trajectories
q = qn(τ), n = 1, . . . , N (Fig. 7.1(b) on page 581). In addition, assume that all of
these trajectories are regular in the sense of (H2). Then, the formula (7.216) has to
be replaced by the following sum formula as � → 0:

K(x, t;y, s) =

N
X

n=1

eiS[qn]/� e−diπ/4 e−iπμn(s,t)/2

hd/2| det Jn(t)|1/2
(1 + O(�)) (7.218)

with d = 3. For motions of the particles on the real line and in the Euclidean plane,
we have to choose d = 1 and d = 2, respectively. The formula (7.218) is precise
(i.e., O(�) = 0) if the potential U is a quadratic function.

Small time intervals. If the time interval [s, t] is sufficiently small, then it
follows from

Jn(t) =
t − s

m
I + O((t − s)2)

that det Jn(t) �= 1. Moreover, μn(s, t) = 0. This simplifies the key formula (7.218).
The quantized harmonic oscillator. To get insight, let us consider the equa-

tion of motion
q̈(τ) = −ω2q(τ), 0 ≤ τ ≤ t

for a classical harmonic oscillator on the real line. Here, t > 0. Add the boundary
condition105 q(0) = y, q(t) = x. This problem has the unique solution

104 A sketch of the proof based on the path integral can be found in C. Grosche and
F. Steiner, Handbook of Feynman Path Integrals, Sect. 5.2, Springer, Berlin,
1998. For the full proof embedded into a general setting, see the monograph by
V. Guillemin and S. Sternberg, Geometric Asymptotics, Sect. II.7, Amer. Math.
Soc., Providence, Rhode Island, 1989.

105 To simplify notation, we set s = 0.
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q(τ) = y cos ωτ + (x − y cos ωt)
sin ωτ

sin ωt

if the given time t is different from the critical time points tn,crit := nπ/ω with
n = 1, 2, ... This yields the action

S[q] =

Z t

0

( 1
2
mq̇(τ)2 − 1

2
mω2q(τ)2)dτ =

(x2 + y2) cos ωt − 2xy

2x2
0 sin ωt

.

The Jacobi equation reads as

J̈(τ) + ω2J(τ) = 0, 0 ≤ τ ≤ t, J(0) = 0, J̇(0) =
1

m
.

Hence

J(t) =
sin ωt

m
.

If t �= tn,crit, then J(t) �= 0. To compute the Morse index, consider the Jacobi
eigenvalue problem

−ḧ(τ) − ω2h(τ) = λh(τ), 0 ≤ τ ≤ t, h(0) = h(t) = 0.

If 0 < tω < π, then there is no negative eigenvalue. Hence μ(0, t) = 0. However, if
nπ < tω < (n+1)π with n = 1, 2, ... then there are precisely n negative eigenvalues,

λk =
k2π2

t2
− ω2, k = 1, . . . , n

along with the eigenfunctions q = sin τ
√

λk + ω2, k = 1, ..., n. This way, for the
harmonic oscillator, formula (7.218) reads as

K(x, t; y, 0) =
e−iπ/4 e−iπn/2

x0

p

2π| sin ωt|
exp

„

i
(x2 + y2) cos ωt − 2xy

2x2
0 sin ωt

«

(7.219)

for all times t with nπ < tω < (n + 1)π, n = 0, 1, 2, ... Here, we introduce the

characteristic length x0 :=
p

�/mω. This is a precise formula for K; it coincides
with formula (7.144) on page 537.

The freely moving quantum particle on the real line. Let t > 0. We
start with the classical equation of motion

q̈(τ) = 0, 0 ≤ τ ≤ t.

Adding the boundary condition q(0) = y, q(t) = x, we get the unique solution
q(τ) = y + τ(x − y)/t. This yields the classical action

S[q] =

Z t

0

1
2
mq̇(τ)2dτ =

m(x − y)2

2t
.

The Jacobi equation

J̈(τ) = 0, 0 ≤ τ ≤ t, J(0) = 0, J̇(0) =
1

m

yields J(t) = t/m. The Jacobi eigenvalue problem

−ḧ(τ) = λh(τ), 0 ≤ τ ≤ t, h(0) = h(t) = 0

has no negative eigenvalues. Hence μ(0, t) = 0. By (7.218) with d = 1, we obtain

K(x, t; y, 0) = e−iπ/4 ·
r

m

2π�t
eim(x−y)2/2�t.

This coincides with the Feynman propagator kernel (7.157) on page 550.
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7.11 Brownian Motion

In order to understand the beauty of Feynman’s approach to quantum me-
chanics, one has to understand the Brownian motion of immersed particles
and its relation to diffusion processes.

Folklore

7.11.1 The Macroscopic Diffusion Law

We want to consider the diffusion of particles of mass m > 0 on the real line. Let
�(x, t) > 0 denote the mass density of the particles at the position x at time t.
Then the basic diffusion equation reads as

�t(x, t) = κ�xx(x, t), x ∈ R, t ∈ R. (7.220)

Here, the positive number κ is called the diffusion coefficient. Let us motivate this.
Conservation of mass. Let v(x, t) = v(x, t)i denote the velocity vector of the

particles at the point x at time t. Here, the unit vector i points in direction of the
positive x-axis. Furthermore, we introduce the mass current density vector

J(x, t) := �(x, t)v(x, t).

We have J(x, t) = J(x, t)i where

J(x, t) = lim
Δt→0

M(x; t, t + Δt)

Δt
.

Here, M(x; t, t + Δt) is the mass which flows through the point x from left to right
during the time interval [t, t+Δt]. Conservation of mass tells us that the change of
mass on the compact interval [a, b] during the time interval [t, t+Δt] is equal to the
mass which flows through the boundary points during the time interval [t, t + Δt].
Explicitly, for small Δt, we obtain

Z b

a

(�(x, t + Δt) − �(x, t))dt = J(a, t)Δt − J(b, t)Δt,

up to terms of order o(Δt) as Δt → 0. Letting Δt → 0, we get

Z b

a

�t(x, t)dx = J(a, t) − J(b, t) = −
Z b

a

Jx(x, t)dx.

Contracting the interval [a, b] to the point x, we obtain

�t(x, t) = −Jx(x, t). (7.221)

Fick’s empirical diffusion law. Motivated by physical experiments, we as-
sume that

J(x, t) = −κ�x(x, t).

That is, the mass current density is proportional to the (negative) spatial derivative
of the mass density. By (7.221), we get the diffusion equation (7.220).

In the three-dimensional case, the one-dimensional diffusion equation (7.220)
passes over to the three-dimensional diffusion equation

�t(x, t) = −κΔ�(x, t) (7.222)

with the position vector x and time t. Furthermore, Δ� = −�xx − �yy − �zz.
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7.11.2 Einstein’s Key Formulas for the Brownian Motion

We are going to consider the three-dimensional motion of particles of mass m > 0
suspended in a resting fluid. We assume that the suspended particles have a much
greater mass than the molecules of the ambient fluid. The irregular motion of the
suspended particles is caused by a large number of collisions with the molecules of
the ambient fluid. In 1828 the botanist Robert Brown (1773–1858) observed first
such an irregular motion under the microscope, which is called Brownian motion
nowadays. In his famous 1905 paper, the young Einstein (1879–1955) derived the
following two key formulas for the random Brownian motion.106

(i) Fluctuation of the position vector x of a single suspended particle:

(Δx)2 = 6κt. (7.223)

(ii) The Stokes–Einstein relation between the diffusion coefficient D of the sus-
pended particles and the viscosity η of the ambient fluid:

κ =
kT

6πηr
. (7.224)

Here, T is the absolute temperature, k is the Boltzmann constant, and r is the
radius of the suspended particles.

The physical motivation of the Einstein formulas can be found in Chap. 4 of the
monograph by R. Mazo, Brownian Motion: Fluctuations, Dynamics, and Applica-
tions, Oxford University Press, 2002.

7.11.3 The Random Walk of Particles

The random model. We want to investigate the random walk of a particle on
the real line. To this end, we set

xj := jΔx, j = 0,±1,±2, . . . and tk := kΔt, k = 0, 1, 2, . . .

We define

P (xj , tk) := probability of finding the particle at the point xj at time tk.

We assume the following.

(i) The initial condition: The particle is at the origin x0 = 0 at the initial time
t0 = 0. That is, P (0, 0) = 1. Moreover, P (xj , tk) = 0 if xj �= 0 or tk > 0.

(ii) The transition condition: Suppose that the particle is at the point xj at time
tk. Then it will be at the point xj+1 (resp. xj−1) at time tk+1 with probability
1
2
. Applying this to the motion from xj−1 to xj and from xj+1 to xj , we obtain

that, for all j, k,

P (xj , tk+1) = 1
2
P (xj−1, tk) + 1

2
P (xj+1, tk). (7.225)

106 A. Einstein, Die von der molekular-kinetischen Theorie der Wärme geforderte
Behandlung von in ruhenden Flüssigkeiten suspendierten Teilchen (On the mo-
tion of suspended particles in a resting fluid by using the methods of molecular
kinetics), Ann. Phys. 17 (1905), 549–560 (in German). English translation: J.
Stachel (Ed.), Einstein’s Miraculous Year 1905: Five Papers that Changed the
Universe, Princeton University Press, 1998.
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The probability for the particle position. Set p(x, t) := e−x2/4κt
√

4πκt
. We claim

that the number
Z b

a

p(x, t)dx (7.226)

equals the probability of finding the particle in the interval [a, b] at time t.
Motivation. In order to motivate (7.226), let us introduce the (discrete) prob-

ability density

p(xj , tk) :=
P (xj , tk)

Δx
.

Then the number
jb
X

j=0

p(xj , tk)Δx

equals the probability of finding the particle in the interval [0, b] at time tk. Here,
we choose jb := b/Δx. By (7.225),

P (xj , tk+1) − P (xj , tk) = 1
2
(P (xj+1, tk) − 2P (xj , tk) + P (xj−1, tk)).

This implies

p(x, t + Δt) − p(x, t) = 1
2
(p(x + Δx, t) − 2p(x, t) + p(x − Δx, t)).

Hence

p(x, t + Δt) − p(x, t)

Δt
=

p(x + Δx, t) − 2p(x, t) + p(x − Δx, t)

(Δx)2
· (Δx)2

2Δt
.

Letting Δx → 0 and Δt → 0 such that the quotient (Δx)2/2Δt goes to the positive
number κ, then

pt(x, t) = κpxx(x, t), x ∈ R, t > 0. (7.227)

In addition, we obtain the formal initial condition p(x, 0) = δ(x) for all points
x ∈ R.107 By the study of the diffusion equation on page 487, the solution of

(7.227) reads as p(x, t) = e−x2/4κt
√

4πκt
.

7.11.4 The Rigorous Wiener Path Integral

Probabilities of a continuous random walk. Let us consider the random walk
of a particle on the real line with diffusion coefficient κ > 0. Choose the function

p(x, t) :=
e−x2/4κt

√
4πκt

,

and choose the points of time 0 < t1 < . . . < tN := T. Suppose that the particle is
at the point x0 := 0 at time t0 := 0.

• The real number
R

J1
p(x1−x0, t1−t0)dx1 is the probability of finding the particle

on the interval J1 at time t1.

107 This follows from the discrete initial condition p(xj , 0) =
P (xj ,0)

Δx
=

δj0
Δx

by letting
Δx → 0.
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• The real number
R

J1

R

J2
p(x1−x0, t1−t0)p(x2−x1, t2−t1)dx1dx2 is the probability

of finding the particle on the interval J1 and J2 at time t1 and t2, respectively.
• The real number

Z

J1

. . .

Z

JN

N
Y

j=1

p(xj − xj−1, tj − tj−1) dx1 · · · dxN (7.228)

is the probability of finding the particle on the interval J1, . . . , JN at time
t1, . . . , tN , respectively.

The Wiener measure. We want to translate the preceding probabilities into
the language of measure theory. Fix the time T > 0. By definition, the function
space C0[0, T ] consists of all continuous functions

q : [0, T ] → R

with q(0) = 0. Intuitively, x = q(t), 0 ≤ t ≤ T , describes the trajectory of a
Brownian particle on the real line. We want to construct a measure W on the space
C0[0, T ] of trajectories such that, for each measurable subset Ω of C0[0, T ], the real
number

W (Ω)

equals the probability of finding the trajectory q ∈ C0[0, T ] in the set Ω. We will
proceed in two steps.

Step 1: Pre-measure on cylindrical subsets. Let

Ωcyl := {q ∈ C0[0, T ] : q(tk) ∈ Jk, k = 1, . . . , N}

where 0 < t1 < . . . < tN := T , N = 1, 2, . . . , and J1, . . . JN are intervals on the real
line. We define the number W (Ωcyl) by (7.228). This number is called the Wiener
pre-measure of the cylindrical set Ωcyl.

Step 2: Extension of the pre-measure to the Wiener measure. The Wiener pre-
measure on cylindrical sets can be extended to a measure on the function space
C0[0, T ]. This measure (called the Wiener measure) is uniquely determined on the
smallest σ-algebra of C0[0, T ] which contains all the cylindrical sets. For general
measure theory and measure integrals, see Sec. 10.2.1 of Vol. I. Furthermore, we
refer to:

H. Amann and J. Escher, Analysis, Vol. 3, Birkhäuser, Basel, 2001 (in
German). (English edition in preparation.)

E. Stein and R. Shakarchi, Princeton Lectures in Analysis, Vol. III: Mea-
sure Theory, Princeton University Press, 2003.

A detailed summary can be found in the Appendix to Zeidler (1986), Vol. IIB (see
the references on page 1049).

Example. If C1
0 [0, T ] denotes the set of all continuously differentiable functions

q : [0, T ] → R with q(0) = 0, then

W (C1
0 [0, T ]) = 0.

This tells us that the trajectory of a Brownian particle is continuously differentiable
with probability zero. In fact, under the microscope one observes zigzag trajectories
of Brownian motion.

The Wiener path integral. General measure theory tells us that the Wiener
measure W on the function space C0[0, T ] induces the measure integral
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Z

C0[0,T ]

F (q) dW (q)

for appropriate functions F : C0[0, T ] → R. This integral is called the Wiener path
integral. Here, we integrate over a set of trajectories. In particular, we have

Z

C0[0,T ]

F (q) dW (q) =

N
X

n=1

FnW (Ωn)

if Ω1, . . . , ΩN is a collection of pairwise disjoint cylindrical sets of the function
space C0[0, T ], and the real-valued function F has the constant values F1, . . . , FN

on Ω1, . . . , ΩN , respectively, and it vanishes outside these sets. If Ω is a measur-
able subset of the function space C0[0, T ] (e.g., a cylindrical set), then the Wiener
measure of Ω is given by

W (Ω) =

Z

Ω

dW =

Z

C0[0,T ]

χ(q) dW (q)

where χ(q) := 1 for all q ∈ Ω and χ(q) := 0 for all q /∈ Ω.

7.11.5 The Feynman–Kac Formula

In 1947, Marc Kac (1914–1984) attended a lecture given by the young Richard
Feynman (1918–1988) at Cornell University. He was amazed about the fact that
Feynman’s formula related the quantum mechanical propagator to classical mechan-
ics in a very elegant way. He also noticed that Feynman’s idea of the path integral
was close to his own ideas about stochastic processes based on the Wiener integral
due to Norbert Wiener (1894–1964). A few days later Kac rigorously proved a for-
mula which is known nowadays as the Feynman–Kac formula. In his autobiography
Enigmas of Chance, Harper & Row, New York, 1985, Marc Kac writes:

It is only fair to say that I had Wiener’s shoulders to stand on. Feynman
as in everything else he has done, stood on its own, a trick of intellectual
contortion that he alone is capable of.

In order to discuss the Feynman–Kac formula, let us consider the one-dimensional
diffusion equation

�t(x, t) = κ�xx(x, t) − U(x)�(x, t), x ∈ R, t > 0 (7.229)

with the initial condition �(x, 0) = �0(x) for all x ∈ R. We are given the positive
diffusion constant κ, the real-valued potential U ∈ C∞

0 (R), and the real-valued
initial mass density �0 ∈ C∞

0 (R). Define

H� := −κ�xx + U� for all � ∈ C∞
0 (R).

The operator H : C∞
0 (R) → L2(R) can be uniquely extended to a self-adjoint

operator H : D(H) → L2(R) on the real Hilbert space L2(R). In terms of functional
analysis, the solution of (7.229), that is, �t = −H�, reads as

�(t) = e−tH�0, t > 0. (7.230)

The famous Feynman–Kac formula tells us the following.
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Theorem 7.51 For all times T > 0 and all positions x ∈ R, the solution (7.230)
of the diffusion equation (7.229) is given by

�(x, T ) =

Z

C0[0,T ]

�0(x + q(t)) e−
R T
0 U(x+q(t))dt dW (q).

Intuitively, this is a statistics over all possible continuous trajectories of a par-
ticle which starts at the point x at time t = 0. The statistical weight is related
to both the Wiener measure and an exponential function which depends on the
potential U. The proof can be found in:

G. Johnson and M. Lapidus, The Feynman Integral and Feynman’s Oper-
ational Calculus, Chap. 12, Clarendon Press, Oxford, 2000.

We also refer to:

M. Reed and B. Simon, Methods of Modern Mathematical Physics II:
Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

B. Simon, Functional Integration and Quantum Physics, Academic Press,
New York, 1979.

In terms of the limit of classical N -dimensional integrals, the solution �(t) = e−tH�0

of the diffusion equation (7.229) can be represented as

�(x, T ) = lim
N→∞

 

r

1

4πκΔt

!N

PV

Z ∞

−∞
. . . PV

Z ∞

−∞
�0(qN )eS−

N dq1 . . . dqN

(7.231)

with S−
N :=

PN−1
j=0 −m

2

“

qj+1−qj

Δt

”2

− U(qj), as well as Δt := T/N , κ = 1/2m, and
q0 := x.

Corollary 7.52 For all times T > 0 and all positions x ∈ R, we have (7.231).

Note that the principal value PV
R∞
−∞ . . . means limr→∞

R r

−r
. . ., and the limit

N → ∞ refers to the convergence on the real Hilbert space L2(R). The proof based
on the Trotter product formula (see Sect. 8.3 of Vol. I) can be found in Reed and
Simon (1975), Vol. II, Sect. X.11, quoted above.

The passage to the Schrödinger equation. We replace the diffusion equa-
tion (7.229) by the Schrödinger equation

i��t(x, t) = H�(x, t), x ∈ R, t > 0 (7.232)

with the initial condition �(x, 0) = �0(x) for all x ∈ R. Here, we use the differential

operator H� := −κ�xx + U� with κ := �
2

2m
. In terms of the limit of classical N -

dimensional integrals, the solution �(t) = e−itH/��0 of the Schrödinger equation
(7.232) can be represented as follows: the function �(x, T ) at the point x at time T
is equal to the limit

lim
N→∞

 

r

�

4πiκΔt

!N

PV

Z ∞

−∞
. . . PV

Z ∞

−∞
�0(qN )eiSN /�dq1 . . . dqN

(7.233)

with the discrete action
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SN :=

N−1
X

j=0

m

2

“qj+1 − qj

Δt

”2

− U(qj),

as well as Δt := T/N and q0 := x. The square root is to be understood as principal
value.

Corollary 7.53 For all times T > 0 and all positions x ∈ R, we have (7.233).

Here, the limits are to be understood as in Corollary 7.52. Naturally enough,
formula (7.233) is obtained from (7.231) by rescaling. The proof of Corollary 7.53
can be found in Reed and Simon (1975), Vol. II, Sect. X.11, quoted on page 589.

Unfortunately, the Feynman–Kac formula from Theorem 7.51 cannot be rigor-
ously extended to the Schrödinger equation, since the corresponding complex-valued
measure does not exist. This is the statement of the famous Cameron non-existence
theorem which can be found in Johnson and Lapidus (2000), Sect. 4.6, quoted on
page 589.108

7.12 Weyl Quantization

The use of the Moyal product for smooth functions avoids the use of
Hilbert-space operators in quantum mechanics.

Folklore

We can say that quantum mechanics is a deformation of classical mechan-
ics. The Planck constant h is the corresponding deformation parameter.
This is for me the most concise formulation of the correspondence principle
and explains what is meant by quantization.
Beautiful results, which I learned from A. Lichnerowicz, M. Flato, and
D. Sternheimer, allow one to say that classical mechanics is unstable and
that quantum mechanics is essentially a unique deformation of it into a
nonequivalent stable structure.109

Ludwig Faddeev, 1999

108 R. Cameron, A family of integrals serving to connect the Wiener and Feynman
integrals. J. of Math. and Phys. Sci. of MIT 39 (1960), 126–140.

109 L. Faddeev, Elementary introduction to quantum field theory, Vol. 1, pp. 513–
552. In: P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D.
Morrison, and E. Witten (Eds.), Lectures on Quantum Field Theory: A course
for mathematicians given at the Institute for Advanced Study in Princeton in
1996/97, Vols. 1, 2, Amer. Math. Soc., Providence, Rhode Island, 1999 (reprinted
with permission).
We also refer to the beautiful book by L. Faddeev and A. Slavnov, Gauge Fields,
Benjamin, Reading, Massachusetts, 1980. This book is based on the use of Feyn-
man functional integrals; it represents the Faddeev–Popov approach to gauge
theory which was a breakthrough in the quantization of the Standard Model
in particle physics. See L. Faddeev and V. Popov, Feynman diagrams for the
Yang–Mills field, Phys. Lett. 25B (1967), 29–30.
Ludwig Faddeev made seminal contributions to mathematical physics. This is
described in the book by L. Faddeev, 40 Years in Mathematical Physics, World
Scientific, Singapore, 1995.
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Defor-
mation theory and quantization I, II, Annals of Physics 111 (1978), 61–110;
111–151.
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The elegant method of deformation quantization is based on the use of classical
smooth functions equipped with the Moyal star product. This star product repre-
sents a deformation of the classical product of functions. The deformation depends
on the Planck constant h. The first quantum correction of the classical product is
related to the Poisson bracket in classical mechanics. The relation between defor-
mation quantization and the operator-theoretic approach to quantum mechanics in
Hilbert spaces is given by the Weyl calculus.

In the following sections, we will only sketch the basic ideas. We will start with
the formal language used by physicists. From the mnemonic point of view, the
language of physicists is very convenient. Unfortunately, rigorous mathematical ar-
guments are more involved. The rigorous Weyl calculus will be considered in Sect.
7.12.6; this represents a special case of the modern theory of pseudo-differential op-
erators, which combines differential operators with integral operators in the setting
of generalized functions. We would like to encourage the reader to learn both the
language of physicists and the language of mathematicians.

7.12.1 The Formal Moyal Star Product

Let C∞(R2) be the space of smooth functions f : R
2 → C. For f, g ∈ C∞(R2), the

formal Moyal star product is defined by

f ∗ g := fe
i�
2 (∂′

q∂p−∂′
p∂q)g.

Here, the functions f and g depend on the real variables q and p, and we set
∂q := ∂/∂q and ∂p := ∂/∂p. In addition, the prime of ∂′

q indicates that the partial
derivative acts on the left factor f . Explicitly,

f ∗ g =
∞
X

m,n=0

„

i�

2

«m+n
(−1)m

m!n!
(∂m

p ∂n
q f)(∂n

p ∂m
q g). (7.234)

This is to be understood as a formal power series with respect to the variable �.
The Moyal star product has the following properties.

(i) The correspondence principle: For all f, g ∈ C∞(R2),

f ∗ g = fg +
i�

2
{f, g} + O(�2), � → 0.

Here, we use the Poisson bracket {f, g} := fqgp − gqfp. Hence

f ∗ g − g ∗ f = i�{f, g} + O(�2), � → 0.

Therefore, the star product f ∗ g represents a deformation of the classical
product fg. This deformation depends on the Planck constant �. In terms of
physics, the difference f ∗ g− fg describes quantum fluctuations which depend
on �. For example, if we choose f(q, p) := q and g(q, p) := p, then q∗p = qp+ 1

2
i�

and p ∗ q = pq − 1
2
i�. Hence

q ∗ p − p ∗ q = i�.

This commutation rule (for the Moyal star product of classical smooth func-
tions) corresponds to the Born–Heisenberg–Jordan commutation relation QP−
PQ = i�I (in the operator-theoretic formulation of quantum mechanics on
Hilbert spaces). As we will show below, the use of the Moyal star product
avoids the use of operators.
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(ii) Associativity: For all f, g, k ∈ C∞(R2), we have

(f ∗ g) ∗ k = f ∗ (g ∗ k).

7.12.2 Deformation Quantization of the Harmonic Oscillator

The basic equations of deformation quantization. We want to apply the
method of deformation quantization to the motion of a particle on the real line.
The classical trajectory q = q(t) is described by the canonical equations

ṗ(t) = −Hq(q(t), p(t)), q̇(t) = Hp(q(t), p(t)), t ∈ R.

We are given the Hamiltonian H ∈ C∞(R2).
The corresponding quantum motion is obtained by solving the following prob-

lem. We are looking for

• a nonempty index set M,
• a measure μ on the set M,
• functions �m = �m(q, p) on the phase space R

2 for each index m ∈ M, and
• real values Em for each index m ∈ M
such that the following equations hold.

(E) Quantized energy levels Em:

H ∗ �m = Em�m for all m ∈ M.

(D) Distribution function �m: For all indices m, n ∈ M, we have the orthogonality
relation

�m ∗ �n = 0, m �= n,

along with the idempotent law

�m ∗ �m = �m,

and the normalization relation on the phase space,
Z

R2
�m(q, p)

dqdp

h
= 1.

(Q) Quantized energy decomposition of the classical Hamiltonian function:110

H(q, p) =

Z

M
Em�m(q, p)dμ(m) for all q, p ∈ R.

(M) Mean value of energy: For all m ∈ M,

Em =

Z

R2
H(q, p)�m(q, p)

dqdp

h
.

In terms of physics, this means that each of the functions �m = �m(q, p) is
a probability distribution on the phase space which has the quantized energy
level Em as energy mean value.

110 In the special case where M := {0, 1, , 2 . . .}, the integral
R

M Em�m(q, p)dμ(m) is
equal to the infinite series

P∞
m=0 Em�m(q, p)μm. Here, the nonnegative number

μm is the measure of the point {m} for all m = 0, 1, . . .



7.12 Weyl Quantization 593

Suppose that we know a solution of the equations (E) through (M) above. Then,
to a given complex-valued function F : R → C we can assign the star function F∗
defined by

F∗(q, p) :=

Z

M
F (Em)�m(q, p)dμ(m) for all q, p ∈ R.

For example, we may formally define the exponential star function

Exp∗(αtH)(q, p) :=

Z

m∈M
eαtH(q,p)�m(q, p)dμ(m)

for all q, p ∈ R, all times t ∈ R, and fixed complex number α. Formally, it follows
from (E) above that

d

dt
Exp∗ (αtH) = αH ∗ Exp∗ (αtH) .

This equation is called the Schrödinger equation in quantum deformation. In con-
crete models, one has to check that all of the equations formulated above possess a
rigorous meaning, in the sense of well-defined formal expansions with respect to �.
Let us show how quantum deformation works for the harmonic oscillator. In this
case, we choose M = {0, 1, 2, , ...} and μm := 1 for all m.

Application to the harmonic oscillator. The classical function

H(q, p) :=
p2

2m
+

mω2q2

2

is the Hamiltonian for a harmonic oscillator of mass m and angular frequency ω
on the real line. To simplify the computation, it is useful to introduce the new
dimensionless variable

a :=

r

mω

2�

„

q +
ip

mω

«

(7.235)

and the conjugate complex variable

a† =

r

mω

2�

„

q − ip

mω

«

. (7.236)

Hence

H = �ωaa†.

By the chain rule, the Moyal star product reads as

f ∗ g = fe
1
2 (∂′

a∂
a†−∂′

a†∂a)
g

with respect to the new variables a and a†. Here, we set ∂a := ∂/∂a, as well
as ∂a† := ∂/∂a†, and we regard f and g as functions of the variables a and a†.
Explicitly, we obtain111

111 If one wants to see the dependence on the parameter �, then one has to replace
a by

√
� · b. This yields b ∗ b† − b† ∗ b = �, and

f ∗ g =
∞
X

m,n=0

„

�

2

«m+n
(−1)m

m!n!
(∂m

b†∂
n
b f)(∂n

b†∂
m
b g).
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f ∗ g =

∞
X

m,n=0

(−1)m

2m+nm!n!
(∂m

a†∂
n
a f)(∂n

a†∂
m
a g). (7.237)

For example, a ∗ a† = aa† + 1
2

and a† ∗ a = aa† − 1
2
. This implies

a ∗ a† − a† ∗ a = 1. (7.238)

For m = 1, 2, , .., define

• E0 := 1
2
ω�, �0 := 2e−2aa†

;

• Em := ω�(m + 1
2
);

• �m := 1
m!

(a†)m ∗ �0 ∗ am.

Theorem 7.54 For all m, n = 0, 1, , 2, ..., the following hold.
(E) Quantized energy levels: H ∗ �m = Em�m.
(D) Distribution functions: �m ∗ �n = δnm�m.
(Q) Quantized energy decomposition of the classical Hamiltonian function:

H(q, p) =

∞
X

m=0

Em�m(q, p) for all q, p ∈ R.

For the proof, see Problem 7.29.
The relation to the Laguerre polynomials. For all w, z ∈ R with |w| < 1,

the Laguerre polynomials L0, L1, ... are generated by the function

1

1 + w
exp

„

wz

1 + w

«

=

∞
X

n=0

(−1)nwnLn(z).

Explicitly, for n = 0, 1, 2, ...,

Ln(z) =
ez

n!

dn(zne−z)

dzn
=

n
X

m=0

(−1)m n!

(n − m)! m! n!
zm.

The functions

Ln(x) := e−x/2Ln(x) x ∈ R, n = 0, 1, 2, ...

form a complete orthonormal system of the Hilbert space L2(0,∞).

Theorem 7.55 For all m, n = 0, 1, , 2, ..., the following hold.
(L) Laguerre polynomials:

�m = 2(−1)me−2H/�ωLm

„

4H

�ω

«

with the normalization condition
R

R2 �m(q, p) dqdp
h

= 1.

(M) Mean value: Em =
R

R2 H(q, p)�m(q, p) dqdp
h

.
(S) The Schrödinger equation

i�Ft(q, p, t) = H(q, p) ∗ F (q, p, t), q, p, t ∈ R

has the solution

F (q, p, t) =
1

cos ωt
2

exp

„

2H

i�ω
tan

ωt

2

«

for all t ∈ R with ωt �= 2nπ, n = 0,±1,±2, ...
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For the proof, see Problem 7.30.
Motivation for the deformation quantization of the harmonic oscil-

lator. We want to show how the method of deformation quantization considered
above is related to Schrödinger’s operator-theoretic treatment of the harmonic os-
cillator studied on page 534. Consider the operators

Qpre, Ppre, Hpre : S(R) → S(R)

with Qpreϕ(q) := qϕ(q) and Ppreϕ(q) = −i�ϕ′(q) for all q ∈ R, as well as

Hpre :=
P 2

pre

2m
+

mω2Qpre

2
.

Using the Dirac calculus, let |ϕ0〉, |ϕ1〉, . . . denote the complete orthonormal system
of eigenvectors of the Hamiltonian Hpre. That is,

Hpre|ϕm〉 = Em|ϕm〉, m = 0, 1, 2, . . .

with Em := �ω(m + 1
2
). In addition, let us introduce the operator

�m := |ϕm〉〈ϕm|, m = 0, 1, . . .

This is the von Neumann density operator corresponding to the eigenstate |ϕm〉.
Then, for all indices m, n = 0, 1, . . . and all times t ∈ R, the following hold:112

(a) Hpre�m = Em�m;
(b) Hpre =

P∞
m=0 Em�m;

(c) �m�n = δmn�m;

(d) i� d
dt

e−itHpre/� = Hpree
−itHpre/� .

Relation (a) follows from

(Hpre�m)|ϕm〉 = Hpre|ϕm〉〈ϕm|ϕ〉 = Em|ϕm〉〈ϕm|ϕ〉 = Em�m|ϕ〉.

Relations (b) and (d) are a consequence of

f(Hpre)ϕ =
∞
X

m=0

f(Em)|ϕm〉〈ϕm|ϕ〉

for all ϕ ∈ S(R), where f(x) := x or f(x) := e−ixt/� for all x ∈ R. Finally, relation
(c) follows from

|ϕm〉〈ϕm|ϕn〉〈ϕm|ϕ〉 = Emδmn|ϕm〉〈ϕm|ϕ〉 for all ϕ ∈ S(R).

This finishes the proof of (a)–(d). In the following sections, we will introduce the
Weyl calculus. Here,

112 Explicitly, condition (b) means that Hpreϕ =
P∞

m=0 Em�mϕ for all ϕ ∈ S(R),
and condition (d) is a short-hand writing for the equation

i�
d

dt

∞
X

m=0

e−iEmt/��mϕ =

∞
X

m=0

Eme−iEmt/��mϕ,

which is valid for all ϕ ∈ S(R). The limits are to be understood in the sense of
the convergence on the Hilbert space L2(R).
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• operators have to be replaced by their symbols, and
• operator products have to be replaced by the Moyal star product of the corre-

sponding symbols.

Replacing the operators Hpre, �m, e−iHpre/� by their symbols H, �m, F , the formulas
(a)–(d) pass over to the following formulas:

(a∗) H ∗ �m = Em�m;
(b∗) H =

P∞
m=0 Em�m;

(c∗) �m�n = δmn�m;
(d∗) i�Ft = H ∗ F.

This corresponds to Theorems 7.54 and 7.55 above. For the annihilation operator
a and the creation operator a† given by

a :=

r

mω

2�

„

Qpre +
iPpre

mω

«

and a† :=

r

mω

2�

„

Qpre −
iPpre

mω

«

,

the symbols a and a† are given by (7.235) and (7.236), respectively. The operator
commutation relation aa†−a†a = I corresponds to the Moyal-star-product relation
a∗a†−a† ∗a = 1 for the symbols in the Weyl calculus. This coincides with (7.238).

7.12.3 Weyl Ordering

The Moyal star product of classical symbols passes over to the operator
product of the corresponding Weyl operators.

Folklore

As a preparation for the general Weyl calculus, let us start with the rigorous theory
of Weyl polynomials. In the quantum mechanics of particles on the real line, we
encounter both113

• the position operator Q : S(R) → S(R) given by (Qψ)(q) := qψ(q) and
• the momentum operator P : S(R) → S(R) given by (Pψ)(q) := −i�ψ′(q)

for all ψ ∈ S(R) and all q ∈ R. These two basic operators are formally self-adjoint
on the Hilbert space L2(R), that is,

〈Qψ|ϕ〉 = 〈ψ|Qϕ〉 and 〈Pψ|ϕ〉 = 〈ψ|Pϕ〉 for all ψ, ϕ ∈ S(R).

Here, we use the inner product 〈ψ|χ〉 :=
R

R
ψ†(q)χ(q)dq on L2(R). In other words,

Q† = Q and P † = P.114

Weyl polynomials with respect to the operators Q and P on the linear
function space S(R). Consider an arbitrary polynomial

a(q, p) :=

N
X

k,m=0

ckmqkpm for all q, p ∈ R (7.239)

with respect to the real variables q and p. Here, the coefficients ckm are complex
numbers. It is our goal to assign to each polynomial a a linear operator

113 To simplify notation, we write the operator symbol Q (resp. P ) instead of Qpre

(resp. Ppre).
114 In addition, the operators Q, P : S(R) → S(R) are essentially self-adjoint on the

Hilbert space L2(R).
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A(a) : S(R) → S(R),

which is a polynomial with respect to Q and P , such that the following properties
hold.

(W1) Linearity: For all polynomials a, b and all complex numbers α, β, we get

A(αa + βb) = αA(a) + βA(b).

In particular, if a(q, p) := q and b(q, p) := p, then A(a) := Q and A(b) := P.
Furthermore, A(1) = I (identity operator).

(W2) Weyl ordering: If a(q, p) := qp, then115

A(a) = 1
2
(QP + PQ).

(W3) Formal self-adjointness: If the coefficients of the polynomial a are real, then
the Weyl operator A(a) is formally self-adjoint. Explicitly,

〈A(a)ψ|ϕ〉 = 〈ψ|A(a)ϕ〉 for all ψ, ϕ ∈ S(R).

In other words, the Weyl polynomials A(a) to real polynomials a are formal
observables in quantum mechanics.

(W4) Composition rule: If a and b are polynomials, then116

A(a ∗ b) = A(a)B(b).

This means that the Moyal star product of polynomials is translated into the
operator product of Weyl polynomials on the space S(R). This is the charac-
teristic property of the Moyal star product.

In about 1930, it was the idea of Weyl to introduce the symmetric Weyl polynomials
(qkpm)W by setting

• (qk)W := Qk and (pm)W := P m, where m, k = 0, 1, . . .;
• (qp)W := 1

2
(QP + PQ);

• (q2p)W := 1
3
(Q2P + PQ2 + QPQ);

• (q2p2)W := 1
6
(Q2P 2 + P 2Q2 + QP 2Q + PQ2P + QPQP + PQPQ).

In the general case, we proceed as follows. In order to obtain (qkpm)W , we start
with the symmetrized expression

(A1A2 · · ·Ak+m)sym :=
1

(k + m)!

X

π

Aπ(1)Aπ(2) · · ·Aπ(k+m)

where we sum over all possible permutations π of 1, 2, . . . , k + m. Finally, we set
A1 = . . . = Ak := Q and Ak+1 = . . . = Ak+m := P. For each polynomial a from
(7.239), we now define the Weyl polynomial

115 This expression is symmetric with respect to Q and P . Furthermore, the operator
A(a) : S(R) → S(R) is formally self-adjoint, that is,

A(a)† := 1
2
(P †Q† + Q†P †) = 1

2
(PQ + QP ) = A(a).

These properties would fail if we would assign to qp the operators QP or PQ .
116 Note that the Moyal star product a ∗ b from (7.234) on page 591 is a finite sum

if a = a(q, p) and b = b(q, p) are polynomials.
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A(a) :=

N
X

k,m=0

ckm(qkpm)W . (7.240)

The polynomial a is called the symbol of the Weyl polynomial A(a).

Proposition 7.56 The Weyl correspondence (7.240) possesses the properties (W1)
through (W4) formulated above.

In particular, it follows from (W4) above that the symbol of the operator prod-
uct A(a)A(b) is the Moyal star product a∗b of the symbols a and b of the operators
A(a) and B(a), respectively.

The proof of Prop. 7.56 is elementary. For the Moyal star product one has to
use an induction argument. For example, it follows from relation (7.237) on page
594 that q ∗ p = qp + 1

2
i�. Hence

A(q ∗ p) = A(qp) + 1
2
i�A(1) = 1

2
(QP + PQ) + 1

2
i�I.

Using the commutation relation QP − PQ = i�I, we obtain

A(q ∗ p) = QP = A(q)A(p).

Proposition 7.57 Let k = 0, 1, 2, . . . and r, s ∈ C. The operator (rQ+ sP )k is the
Weyl operator to the polynomial a(q, p) := (rq + sp)k.

The proof is elementary. For example, we have

(rq + sp)2 = r2q2 + 2rsqp + s2p2

and (rQ + sP )2 = (rQ + sP )(rQ + sP ) = r2Q2 + rs(QP + PQ) + s2P 2. Hence

(rQ + sP )2 = r2(q2)W + 2rs(qp)W + s2(p2)W .

Standard example. Let â ∈ S(R2), and N = 0, 1, . . .117 Then the polynomial

a(q, p) =
1

2π�

Z

R2

N
X

k=0

ik(rq + sp)k

�kk!
â(r, s)drds,

with respect to the real variables q and p, is well-defined. By Prop. 7.57, the Weyl
operator to the symbol a reads as

A(a) =
1

2π�

Z

R2

N
X

k=0

ik(rQ + sP )k

�kk!
â(r, s)drds.

Formal generalization. Now consider the well-defined integral

a(q, p) =
1

2π�

Z

R2
ei(rq+sp)/� â(r, s)drds.

Here, a ∈ S(R2). Explicitly, â is the Fourier transform of a. Using the formal limit
N → ∞, we get

117 The definition of both the Schwartz function space S(Rn) and the space of tem-
pered distributions S ′(Rn) can be found on pages 537 and 615 of Volume I.
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A(a) =
1

2π�

Z

R2
ei(rQ+sP )/� â(r, s)drds. (7.241)

This formal expression is frequently used by physicists.
Inductive construction of the Weyl operators. One can show that, for all

polynomials a of the form (7.239), the following rigorous formulas hold:

QA(a) = A(qa + 1
2
i�ap), A(a)Q = A(qa − 1

2
i�aq),

PA(a) = A(pa − 1
2
i�ap), A(a)P = A(pa + 1

2
i�ap).

For example, if a(q, p) := p, then we get QP = QA(p) = A(qp) + 1
2
i�I. In addition,

we have PQ = A(p)Q = A(qp) − 1
2
�iI. Hence QP + PQ = 2A(qp).

7.12.4 Operator Kernels

Operator kernels generalize matrix elements; they relate differential oper-
ators to integral operators, in a generalized sense. The formal approach
was introduced by Paul Dirac in the late 1920s (Dirac calculus). The rig-
orous theory is based on the kernel theorem which was proved by Laurent
Schwartz in the late 1940s (theory of tempered distributions).118

Folklore

Classical kernels. For given function A ∈ S(R2), we define

(Aψ)(x) :=

Z

R2
A(x, y)ψ(y)dy, x ∈ R

for all functions ψ ∈ S(R). The function A is called the kernel of the linear, sequen-
tially continuous operator

A : S(R) → S(R). (7.242)

Each function ϕ ∈ S(R) corresponds to a tempered distribution Tϕ ∈ S(R) given
by

Tϕ(χ) :=

Z

R

ϕ(x)χ(x)dx for all χ ∈ S(R).

The map ϕ �→ Tϕ is an injective, linear, sequentially continuous map from S(R)
into S ′(R). Identifying ϕ with Tϕ, we get S(R) ⊆ S ′(R). In this sense, the map
ψ �→ Aψ �→ TAψ yields the linear, sequentially continuous operator

A : S(R) → S ′(R).

Explicitly, we obtain

(Aψ)(χ) =

Z

R2
A(x, y)χ(x)ψ(y)dxdy for all ψ, χ ∈ S(R). (7.243)

118 L. Schwartz, Théorie des noyaux (Theory of kernels) (in French), Proceed-
ings of the 1950 International Congress of Mathematicians in Cambridge, Mas-
sachusetts, Vol. I, pp. 220–230, Amer. Math. Soc., Providence, Rhode Island,
1952. At this congress, Laurent Schwartz (1915–2002) was awarded the Fields
medal for creating the theory of distributions in about 1945.
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Here, we briefly write (Aψ)(χ) instead of TAψ(χ). Introducing the tempered distri-
bution A ∈ S ′(R2) by setting

A(�) :=

Z

R2
A(x, y)�(x, y)dxdy for all � ∈ S(R2),

equation (7.243) tells us that

(Aψ)(χ) = A(χ ⊗ ψ) for all ψ, χ ∈ S(R). (7.244)

The product property of kernels. If the kernels A,B ∈ S(R2) correspond
to the operators A, B : S(R) → S(R), respectively, then the product operator AB
has the kernel C given by the product formula

C(x, y) :=

Z

R

A(x, z)B(z, y)dz for all x, y ∈ R. (7.245)

This relation generalizes the matrix product. To prove (7.245), set χ := Aψ and
ψ := Bϕ. Then χ = (AB)ϕ. Hence

χ(x) =

Z

R

A(x, z)(Bϕ)(z)dz =

Z

R

„

Z

R

A(x, z)B(z, y)dz

«

ϕ(y)dy.

The kernel of the position operator Q. For all χ, ψ ∈ S(R),

(Qψ)(χ) =

Z

R2
χ(x)xψ(x)dx. (7.246)

Using the Dirac delta function, the equation (Qψ)(x) = xψ(x) can formally be
written as

(Qψ)(x) =

Z

R

xδ(x − y)ψ(y)dy for all x ∈ R.

Thus, the function Q(x, y) := xδ(x−y) is the formal kernel of the position operator
Q. Using the Dirac calculus119, the formal kernel of the position operator Q can
also be obtained by

Q(x, y) = 〈x|Q|y〉 = y〈x|y〉 = yδ(x − y) = xδ(x − y).

The kernel of the momentum operator P . For all χ, ψ ∈ S(R),

(Pψ)(χ) =

Z

R2
(−i�ψ′(x))χ(x)dx. (7.247)

In order to get the formal kernel P of the operator P used by physicists, we start
with the (rescaled) Fourier transformation

(Fϕ)(p) :=
1√
2π�

Z

R

e−ixp/�ϕ(x)dx, ϕ(x) =
1√
2π�

Z

R

eixp/�(Fϕ)(p)dp.

Here, the operator F : S(R) → S(R) is bijective, linear, and sequentially continuous,
and the inverse operator F−1 has the same properties. It follows from

119 See page 596 of Volume I.
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F(Pψ)(p) = p(Fψ)(p)

that we have the formal relation

F(Pψ)(p) =

Z

R

pδ(p − r)(Fψ)(r)dr for all p ∈ R.

This implies (Pψ)(x) =
R

R
P(x, y)ψ(y)dy with the formal kernel

P(x, y) : =
1

2π�

Z

R2
ei(xp−yr)/�pδ(p − r)dpdr

=
1

2π�

Z

R

eip(x−y)/�p dp for all x, y ∈ R. (7.248)

Using the Dirac calculus (i.e., the completeness relation
R

R
dp |p〉〈p| = I), the formal

kernel can also be obtained by

P(x, y) = 〈x|P |y〉 =

Z

R

dp

Z

R

dr 〈x|p〉〈p|P |r〉〈r|y〉.

Noting that 〈p|P |r〉 = r〈p|r〉 = rδ(p − r) = pδ(p − r) and 〈x|p〉 = eixp/�/
√

2π�,
again we get (7.248).

The Schwartz kernel theorem. Let A : S(R) → S ′(R) be a linear, sequen-
tially continuous operator (e.g., the Weyl operator A(a) to the polynomial symbol
a). Then there exists precisely one tempered distribution A ∈ S ′(R2) such that

(Aψ)(χ) = A(χ ⊗ ψ) for all ψ, χ ∈ S(R). (7.249)

The tempered distribution A is called the kernel of the operator A.
This theorem generalizes (7.244). The kernels of the operators Q and P are

given by (7.246) and (7.247), respectively.
Nuclear spaces. The Schwartz kernel theorem is the special case of a func-

tional-analytic theorem about bilinear forms on nuclear spaces. A Hilbert space
is nuclear iff its dimension is finite. Furthermore, the infinite-dimensional spaces
D(Rn) and S(Rn) are nuclear for n = 1, 2, . . . For the theory of nuclear spaces
and their important applications in harmonic analysis, we refer to the following
monographs:

A. Pietsch, Nuclear locally convex spaces, Springer, Berlin, 1972.

A. Pietsch, Operator Ideals, Deutscher Verlag der Wissenschaften, Berlin,
1978.

A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser,
Boston, 2007.

I. Gelfand, G. Shilov, and N. Vilenkin, Generalized Functions, Vols. 1–5,
Academic Press, New York, 1964.

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, Polish Scientific Publishers, Warsaw, 1968.

K. Maurin, Methods of Hilbert Spaces, Polish Scientific Publishers, War-
saw, 1972.

The theory of nuclear spaces was created by Grothendieck in the 1950s. In the
1955s, Grothendieck left analysis, and he moved to algebra and geometry. For his
seminal contributions to algebraic geometry, homological algebra, and functional
analysis, Alexandre Grothendieck (born 1928 in Berlin) was awarded the Fields
medal in 1966. His childhood and youth was overshadowed by German fascism. His
father died in the German concentration camp Auschwitz in 1942. We refer to:
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A. Grothendieck, Récoltes et Semailles: réflexions et témoignage sur un
passé de mathématicien, 1986 (ca. 1000 pages) (in French).(Reaping and
Sowing: the life of a mathematician – reflections and bearing witness).
Internet: http://www.fermentmagazine.org/rands/recoltes1.html
Translations into English, Russian, and Spanish are ongoing.

P. Cartier, A mad day’s work: from Grothendieck to Connes and Kontse-
vich. The evolution of concepts of space and symmetry. Bull. Amer. Math.
Soc. 38(4) (2001), 389–408.

W. Scharlau, Who is Alexander Grothendieck? Part I, 2007 (in German).
Internet: http://www.Scharlau-online.de/DOKS/ag

7.12.5 The Formal Weyl Calculus

Our goal is to extend the relation between polynomial symbols a = a(q, p) and
Weyl operators A(a) to more general symbols a. In order to motivate the rigorous
approach to be considered in Sect. 7.12.6, let us start with purely formal arguments
used by physicists. The key formulas read as follows.

(i) Superposition: For the symbol

a(q, p) =
1

2π�

Z

R2
ei(xq+yp)/� â(x, y)dxdy, q, p ∈ R,

the Weyl operator is given by

A(a) :=
1

2π�

Z

R2
ei(xQ+yP )/� â(x, y)dxdy. (7.250)

Here, â = â(x, y) is the (rescaled) Fourier transform of a = (q, p).
(ii) The kernel formula: We have

(Aψ)(x) =

Z

R

A(x, y)ψ(y)dy, x ∈ R

with the formal kernel

A(x, y) =
1

2π�

Z

R

eip(x−y)/� a
“x + y

2
, p
”

dp, x, y ∈ R. (7.251)

The inverse Fourier transformation yields

a(q, p) =

Z

R

eirp/�A(q − 1
2
r, q + 1

2
r)dr, q, p ∈ R. (7.252)

(iii) Formal self-adjointness: For the formally adjoint operator of the Weyl operator
A(a) on the Hilbert space L2(R), we get

A(a)† = A(a†).

In particular, if the function a is real-valued, then the corresponding Weyl
operator A(a) is formally self-adjoint on the Hilbert space L2(R).
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(iv) The composition formula: If the symbols a = a(q, p) and b = b(q, p) correspond
to the Weyl operators A(a) and A(b), then the operator product is given by

A(a)A(b) = A(a ∗ b)

with the star product

(a ∗ b)(q, p) :=
1

π2�2

Z

R4
e2� i/� a(q1, p1)b(q2, p2) dq1dp1dq2dp2

for all q, p ∈ R. Here, the function � = �(q, p, q1, p1, q2, p2) is defined by

� :=

˛

˛

˛

˛

˛

˛

˛

q p 1

q1 p1 1

q2 p2 1

˛

˛

˛

˛

˛

˛

˛

= q(p1 − p2) + p(q2 − q1) + (q1p2 − p1q2).

If b̂ denotes the (rescaled) Fourier transform of b, that is,

b̂(ξ, η) =
1

2π�

Z

R2
e−i(qξ+pη)/� b(q, p) dqdp, (7.253)

then

(a ∗ b)(q, p) =
1

2π�

Z

R2
ei(qξ+pη)/� a

„

q − η

2
, p +

ξ

2

«

b̂(ξ, η) dξdη.

As we will show below by using the Fourier transform together with the Taylor
expansion, this implies

(a ∗ b)(q, p) = a

„

q +
i�

2

∂

∂p2
, p − i�

2

∂

∂q2

«

b(q2, p2)|q2=q,p2=p.

Here, we have to assume that a is a polynomial (or a formal power series
expansions with respect to q and p). Finally, note that the star product a ∗ b
coincides with the formal Moyal star product, that is,

a ∗ b =

∞
X

m,n=0

„

i�

2

«m+n
(−1)m

m!n!

∂m+na

∂pm∂qn

∂m+nb

∂pn∂qm
. (7.254)

Let us motivate this in a formal manner. To simplify notation, we set � := 1.
Ad (i) See formula (7.241) on page 599.
Ad (ii). (I) Commutation relation. It follows from QP − PQ = iI that

QnP − PQn = inQn−1, n = 1, 2, . . .

by induction. If F (Q) = a0I + a1Q + a2Q
2 + . . . , then we formally get

F (Q)P − PF (Q) = iF ′(Q).

In particular, e−itrQP − P e−itrQ = tr · e−itrQ for all t, r ∈ R.
(II) Let us prove the key relation

eit(rQ+sP ) = eit2rs/2 · eitrQeitsP , r, s ∈ R. (7.255)
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To this end, we set U(t) := e−itsP e−itrQeit(rQ+sP ) for all t ∈ R. Differentiating with
respect to time t and using (I), we obtain

U ′(t) = −ise−itsP
“

P e−itrQ − e−itrQP
”

eit(rQ+sP ) = itrsU(t).

Since U(0) = I, we get U(t) = eit2rs/2I. This implies (7.255).
(III) Setting t = 1, we obtain

ei(rQ+sP ) = eirs/2 · eirQeisP , r, s ∈ R.

Recall that iPψ = ψ′. By Taylor expansion,

(eisP ψ)(x) = ψ(x) + sψ′(x) + s2

2!
ψ′′(x) + . . . = ψ(x + s).

Similarly,

(eirQψ)(x) = ψ(x) + irxψ(x) +
(irx)2

2!
ψ(x) + . . . = eirxψ(x).

Hence (ei(rQ+sP )ψ)(x) = eirs/2eirxψ(x + s) for all x ∈ R.
(IV) We briefly write A instead of A(a). By (7.250),

(Aψ)(x) =
1

2π

Z

R2
eirxeirs/2ψ(x + s) â(r, s)drds.

Inserting â(r, s) = 1
2π

R

R2 e−i(rq+sp) a(q, p)dqdp, we get

(Aψ)(x) =
1

(2π)2

Z

R2
eir(x−q+

1
2

s)e−isp a(q, p)ψ(x + s)drdsdqdp.

Since
R

R
eir(x−q+

1
2

s)dr = 2πδ(x − q + 1
2
s), we obtain

(Aψ)(x) =
1

2π

Z

R2
e−isp a(x + 1

2
s, p)ψ(x + s)dpds.

Finally, the substitution y = x + s yields the desired result

(Aψ)(x) =
1

2π

Z

R2
ei(x−y)p a

“x + y

2
, p
”

ψ(y)dpdy.

Ad (iii). By (ii), the operator A(a†) has the kernel

B(x, y) =
1

2π

Z

R

eip(x−y)/� a
“x + y

2
, p
”†

dp, x, y ∈ R.

Again by (ii), this is equal to A(y, x)†. Hence A(a†) = A(a)†.
Ad (iv). (I) The kernel C of the operator product C := A(a)A(b) is given by

C(x, y) =

Z

R

A(x, z)B(z, y)dz.

By (ii), we have the following relations between the symbols a, b and the kernels
A,B, respectively:
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A(x, z) =
1

2π

Z

R

eip1(x−z) a
“x + z

2
, p1

”

dp1,

B(z, y) =
1

2π

Z

R

eip2(z−y) a
“z + y

2
, p2

”

dp2.

Hence

C(x, y) =
1

4π2

Z

R3
eip1(x−z)eip2(z−y)a

“x + z

2
, p1

”

b
“z + y

2
, p2

”

dp1dp2dz.

Let c be the symbol of the operator C. Again by (ii), after the rescaling η = 1
2
r, we

get

c(q, p) = 2

Z

R

e2ipη C(q − η, q + η)dη.

Therefore,

c(q, p) =
1

2π2

Z

R4
eiσ a

“q + z − η

2
, p1

”

b
“q + z + η

2
, p2

”

dp1dp2dzdη

with σ := (q − z − η)p1 + (z − q − η)p2 + 2pη. Using the substitution

q1 = 1
2
(q + z − η), q2 = 1

2
(q + z + η)

and setting � := (q − q2)p1 + (q1 − q)p2 + (q2 − q1)p, we obtain

c(q, p) =
1

π2

Z

R4
e2i� a(q1, p1)b(q2, p2)dp1dp2dq1dq2. (7.256)

(II) Moyal product. Using the substitution q1 = q − 1
2
η, p1 = p + 1

2
ξ, we get

c(q, p) =
1

4π2

Z

R4
ei(q−q2)ξei(p−p2)η a

„

q − η

2
, p +

ξ

2

«

b (q2, p2) dq2dp2dξdη.

If b̂ denotes the (rescaled) Fourier transform (7.253) of the function b, then

c(q, p) =
1

2π

Z

R2
ei(qξ+pη) a

„

q − η

2
, p +

ξ

2

«

b̂(ξ, η) dξdη. (7.257)

Suppose now that the symbol a is a polynomial (or a formal power series ex-
pansion). By Fourier transform, we get the formal expression

c(q, p) = a

„

q +
i

2

∂

∂p2
, p − i

2

∂

∂q2

«

b(q2, p2)|q2=q,p2=p. (7.258)

Finally, using Taylor expansion, we obtain

c(q, p) =

∞
X

m,n=0

„

i

2

«m+n
(−1)m

m!n!

∂m+na

∂pm∂qn

∂m+nb

∂pn∂qm
. (7.259)

(III) Motivation of (7.258). First let a(q, p) := q. It follows from

b(q2, p2) =
1

2π

Z

R2
ei(q2ξ+p2η) b̂(ξ, η) dξdη

that
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„

q +
i

2

∂

∂p2

«

b(q2, p2) =
1

2π

Z

R2
ei(q2ξ+p2η)

“

q − η

2

”

b̂(ξ, η) dξdη.

Setting q2 = q and p2 = p and using (7.257), we obtain (7.258).
Similarly, if a(q, p) := p, then

„

p − i

2

∂

∂q2

«

b(q2, p2) =
1

2π

Z

R2
ei(q2ξ+p2η)

„

p +
ξ

2

«

b̂(ξ, η) dξdη.

Again this yields (7.258).
(IV) Motivation of (7.259). This follows from

a(q + α, p + β) =
∞
X

m,n=0

∂m+na(q, p)

∂pm∂qn
· βmαn

m!n!
,

by setting β := − i
2

∂
∂q

and α := i
2

∂
∂p

. �

7.12.6 The Rigorous Weyl Calculus

It is possible to translate the formal Weyl calculus into a rigorous mathematical
approach by using the language of generalized functions. It is our goal to assign to
a general class of symbols Weyl operators in such a way that

• the theory of Weyl polynomials from Sect. 7.12.3 is generalized and
• the formal Weyl calculus from Sect. 7.12.5 gets a rigorous mathematical basis.

The proofs of the following statements can be found in the monographs by L.
Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 3, Springer,
New York, 1983, and by M. de Gosson, Symplectic Geometry and Quantum Me-
chanics, Birkhäuser, Basel, 2006.

Smooth, rapidly decreasing symbols. Let a, b ∈ S(R). The functions a and
b are called symbols. Then the following hold.

(i) Weyl operator: For given symbol a, define the Weyl operator

(A(a)ψ)(x) :=

Z

R

A(x, y)ψ(y)dy, x ∈ R

for all ψ ∈ S(R) with the kernel

A(x, y) :=
1

2π�

Z

R

eip(x−y)/� a
“x + y

2
, p
”

dp, x, y ∈ R.

Then A ∈ S(R2), and the operator A(a) : S(R) → S(R) is linear and sequen-
tially continuous.

(ii) Bilinear form: Let χ, ψ ∈ S(R2). Then

(A(a)ψ)(χ) =

Z

R2
A(x, y)ϕ(x)ψ(y)dy, x, y ∈ R.

Hence

(A(a)ψ)(χ) =
1

2π�

Z

R2
eip(x−y)/� a

“x + y

2
, p
”

χ(x)ψ(y)dxdydp.

Using the substitution y = 2q − x, x = x, we get
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(A(a)ψ)(χ) =
1

π�

Z

R2
e2ip(x−q)/� a (q, p) χ(x)ψ(2q − x)dxdqdp.

This implies

(A(a)ψ)(χ) =

Z

R2
a(q, p)�χ,ψ(q, p)dqdp (7.260)

with �χ,ψ(q, p) := 1
π�

R

R
e2ip(x−q)/�χ(x)ψ(2q − x)dx.

(ii) Formal self-adjointnes: We get

A(a)† = A(a†).

This means that 〈A(a†)ϕ|ψ〉 = 〈ϕ|A(a)ψ〉 for all ψ, ϕ ∈ S(R), where 〈.|.〉 is the
inner product on the Hilbert space L2(R).

(iii) The composition formula and the rigorous Moyal star product: For the oper-
ator product, we have

A(a)A(b) = A(a ∗ b)

together with the rigorous Moyal star product120

(a ∗ b)(q, p) :=
1

π2�2

Z

R4
e2�i/� a(q1, p1) · b(q2, p2) dq1dp1dq2dp2

for all q, p ∈ R. Here, we use the determinant

� :=

˛

˛

˛

˛

˛

˛

˛

q p 1

q1 p1 1

q2 p2 1

˛

˛

˛

˛

˛

˛

˛

= q(p1 − p2) + p(q2 − q1) + (q1p2 − p1q2). (7.261)

This coincides with (7.256).
(iv) Associativity of the Moyal star product: For all a, b, c ∈ S(R), we have

(a ∗ b) ∗ c = a ∗ (b ∗ c).

Tempered distributions as symbols. Let a ∈ S ′(R2). Motivated by (7.260),
define

(A(a)ψ)(χ) := a(�χ,ψ) χ, ψ ∈ S(R).

Then A(a)ψ ∈ S ′(R), and the linear operator A(a) : S(R) → S ′(R) is sequen-
tially continuous. In particular, if a = a(q, p) is a polynomial with respect to
the variables q and p, then the corresponding tempered distribution is given by
a(�) =

R

R2 a(q, p)�(q, p)dqdp for all � ∈ S(R2).

120 In the general case, the rigorous Moyal star product (7.261) differs from the
formal Moyal star product (7.254). This is discussed in G. Piacitelli, Nonlocal
theories: new rules for old diagrams, 2004. Internet: arXiv: hep-th/0403055
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7.13 Two Magic Formulas

According to one view, the Feynman path integral is simple a suitable
hierolglyphic shorthand for an algorithm of perturbation theory. On the
other hand, the traditional (Wiener) view of the path integral as an inte-
gral with respect to a measure in the function space runs into practically
insurmountable difficulties here and is thus also imperfect. Our own view
is that the Feynman path integral should be understood as the limit of
finite-dimensional approximations. But which approximations? The path
integral proves to be very sensitive to the choice of its approximations,
the resulting ambiguity being of the same nature as the non-uniqueness of
quantization.121

Feliks Berezin and Mikhail Shubin, 1991

It is our goal to use the Weyl calculus in order to get the two magic formulas (7.274)
on page 614 and (7.277) on page 615 for the kernel of the Feynman propagator
operator and the kernel of the Heisenberg scattering operator, respectively. It turns
out that the Weyl calculus relates the Feynman propagator kernel to the Feynman
path integral in a quite natural manner.

Basic ideas. Consider the motion q = q(t) of a classical particle on the real
line with the equation of motion

ṗ(t) = −aq(q(t), p(t)), q̇(t) = ap(q(t), p(t)), t ∈ R.

Here, the given classical Hamiltonian a : R
2 → R is assumed to be smooth. Now we

pass to the corresponding quantum particle. Then we have to study the Schrödinger
equation

i�ψt = Hψ, ψ(t0) = ψ0 (7.262)

for the wave function ψ = ψ(x, t) of the quantum particle on the Hilbert space
L2(R).

In terms of Weyl quantization, the operator H = A(a) is the Weyl operator
related to the symbol a = a(q, p). This operator is called the Hamiltonian (or
energy operator) of the quantum particle. It is our goal to study both

• the full dynamics of the quantum particle (i.e., the Feynman propagator operator

P (t, t0) := e−i(t−t0)H/�), and
• scattering processes for the quantum particle (i.e., the Heisenberg scattering

operator S(t, t0) := eitHfree/�e−i(t−t0)H/�e−it0Hfree/�). Here, we assume that the
Hamiltonian H is a perturbation of the free Hamiltonian Hfree. Explicitly,

H = Hfree + κU. (7.263)

A scattering process is characterized by the property that the motion of the
quantum particle is free in the remote past (t0 → −∞) and in the far future
(t → +∞). The free Hamiltonian Hfree = P 2/2m is the Weyl operator to the
symbol afree(p) := p2/2m, and the operator U is the Weyl operator to the symbol
q �→ U(q). The real number κ is called coupling constant. Summarizing, the
Hamiltonian operator H has the symbol

a(q, p) =
p2

2m
+ κU(q).

121 F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht, 1991
(reprinted with permission).
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We will proceed in the following manner.

(a) Evolution operators: We start with time-dependent operators in the Hilbert
space L2(R) (i.e., the Feynman propagator and the Heisenberg scattering op-
erator).

(b) Kernels: The evolution operators can be described by kernels depending on
space and time coordinates.

(c) Causality: The kernel on a finite time interval is the superposition of kernels
on small time intervals.

(d) Reduction to operator symbols: The kernel of a small time interval can be
computed by using the kernel formula of the Weyl calculus, which depends on
the symbol of the evolution operator.

(e) Limit: If the small time interval goes to zero, then the kernel of the evolution
operator can be expressed by a Feynman path integral, which depends on the
symbol a of the Hamiltonian operator.

This way, we obtain an elegant relation between classical mechanics described by
the classical Hamiltonian a and

• the kernel K of the Feynman propagator operator (called the Feynman propaga-
tor kernel), and

• the kernel S of the Heisenberg scattering operator (called the scattering kernel).

In what follows, we will only use formal arguments. Let us first discuss the physical
meaning of both the Feynman propagator operator and the Heisenberg scattering
operator.

The Feynman propagator operator. The operator

P (t, t0) := e−i(t−t0)H/� , t ≥ t0

is called the Feynman propagator. For given initial state ψ0 ∈ L2(R), the state

ψ(t) = P (t, t0)ψ0

is a solution of the Schrödinger equation (7.262). From the physical point of view,
the propagator P (t, t0) sends the particle state ψ0 at the initial time t0 to the
particle state ψ(t) at time t. Therefore, the propagator describes the dynamics of
the quantum particle. Let

−∞ < t0 < t1 < · · · < tN−1 < tN < ∞.

Then the addition theorem for the exponential function tells us that we have the
following operator product

P (tN , t0) = P (tN , tN−1) · · ·P (t2, t1)P (t1, t0). (7.264)

This product property reflects causality. To understand this, note that it follows
from ψ(t1) = P (t1, t0)ψ0 and ψ(t2) = P (t2, t1)ψ(t1) that

ψ(t2) = P (t2, t1)P (t1, t0)ψ0 = P (t2, t0)ψ0.

The propagator t �→ P (t, t0) satisfies the following equation

i�Pt(t, t0) = HP (t, t0), t ≥ t0, P (t0, t0) = I, (7.265)

which is called the propagator differential equation.
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The Heisenberg scattering operator. Suppose that the Hamiltonian oper-
ator H is the perturbation of the free Hamiltonian Hfree according to (7.263). Let
us investigate scattering processes. The operator

S(t, t0) := eitHfree/�P (t, t0)e
−it0Hfree/� , t ≥ t0

with P (t, t0) := e−i(t−t0)H/� is called the Heisenberg scattering operator (or the
S-matrix operator). In order to understand the physical meaning of the scattering
operator, consider the free motion

ψfree,in(t) := e−itHfree/�ϕin, t ∈ R

with the initial state ϕin at time t = 0, and

ψfree,out(t) := e−itHfree/�ϕout, t ∈ R

with the initial state ϕout at time t = 0. The transition amplitude

τ := 〈ψfree,out(t)|P (t, t0)ψfree,in(t0)〉, t > t0

is equal to

τ = 〈ϕout|
“

e−itHfree/�

”†
P (t, t0)e

−it0Hfree/�ϕin〉 = 〈ϕout|S(t, t0)ϕin〉.

The real number

|τ |2 = |〈ϕout|S(t, t0)ϕin〉|2, t > t0 (7.266)

is the transition probability from the incoming free state ψfree,in(t0) at time t0 to
the outgoing free state ψfree,out(t) at time t.

The transition probability (7.266)indexscattering matrix (S-matrix)!transition
probability is the key for computing cross sections of scattering processes
in particle accelerators.

We also define

〈ϕout|Sϕin〉 := lim
t→+∞

lim
t0→−∞

= 〈ϕout|S(t, t0)ϕin〉

if this limit exists. Here, the complex number 〈ϕout|Sϕin〉 is called an S-matrix
element. Parallel to (7.264), we get the causal product relation

S(tN , t0) = S(tN , tN−1) · · · S(t2, t1)S(t1, t0). (7.267)

Furthermore, we have the differential equation

i�St(t, t0) = κU(t)S(t, t0), t ≥ t0, S(t0, t0) = I (7.268)

for the scattering operator. Here, we introduce the transformed perturbation

U(t) := eitHfree/�Ue−it0Hfree/� .

Let us motivate (7.268). To simplify notation, choose � := 1. Then
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iSt(t, t0) = −eitHfreeHfreeP (t, t0)e
−it0Hfree + ieitHfreePt(t, t0)e

−it0Hfree ,

which is equal to

eitHfree(H − Hfree)P (t, t0)e
−it0Hfree = κeitHfreeUe−it0HfreeS(t, t0).

Dyson’s magic S-matrix formula. Let us pass from differential equations to
integral equations. From the differential equation (7.268) for the scattering operator,
we get the equivalent Volterra integral equation

S(t, t0) = I − iκ

�

Z t

t0

U(τ)S(τ, t0)dτ, t ≥ t0. (7.269)

We have shown in Sect. 7.17.4 of Vol. I that the integral equation (7.269) has the
unique solution

S(t, t0) = T e
− iκ

�

R t
t0

U(τ)dτ
, t ≥ t0 (7.270)

where T is the chronological operator (see page 382 of Vol. I). This is Dyson’s magic
S-matrix formula which plays the decisive role in the operator-theoretic approach to
quantum field theory. Comparing the propagator equation (7.265) with the equation
(7.268) for the scattering operator, we get the following:

The scattering operator S(t, t0) coincides with the Feynman propagator
P(t, t0) in the Dirac interaction picture (with respect to the transformed
perturbation κU(t) of the Hamiltonian operator).122

This fact is of fundamental importance for understanding the S-matrix theory in
quantum field theory.

The integral equation for states. For given ϕin ∈ L2(R), introduce the
function ϕ(t) := S(t, t0)ϕin. By (7.269), we obtain the integral equation

ϕ(t) = ϕin − iκ

�

Z t

t0

U(τ)ϕ(τ)dτ, t ≥ t0.

Let ϕ = ϕ(t) be a solution of this integral equation. Set ψ(t) := e−itHfree/�ϕ(t) for
all t ≥ t0. Then

ψ(t) = P (t, t0)e
−it0Hfree/�ϕin, t ≥ t0.

By the propagator equation (7.265), this is a solution of the Schrödinger equation

(7.262) with the initial condition ψ(t0) = ψfree,in = e−it0Hfree/�ϕin.

7.13.1 The Formal Feynman Path Integral for the Propagator
Kernel

The dynamics of a quantum system is described by a time-dependent op-
erator called the Feynman propagator. The kernel of the propagator can
be formally represented by a Feynman path integral which depends on the
classical Hamiltonian (i.e., the symbol of the Hamiltonian operator). This
is the first magic formula in quantum physics.

Folklore

122 The Schrödinger picture, the Heisenberg picture, and the Dirac (or interaction)
picture are thoroughly discussed on page 393 of Vol. I.
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Euler’s polygon method. Set tk := t0 + kΔt, k = 1, . . . , N and tN := t. This
way, we get the decomposition

t0 < t1 < . . . < tN−1 < tN

of the time interval [t0, t]. Let b : R → R be a given smooth function. We want to
solve the ordinary differential equation

ψ′(t) = b(t)ψ(t), t ≥ t0, ψ(t0) = ψ0.

We are looking for a smooth solution ψ : R → R. This uniquely determined solution
is denoted by ψ(t) = P (t, t0)ψ0. Then

P (t, t0)ψ0 = P (tN , tN−1) · · ·P (t2, t1)P (t1, t0)ψ0,

and Pt(t, t0)ψ0 = b(t)P (t, t0)ψ0 for all ψ0 ∈ R. Hence Pt(t, t) = b(t). By Taylor
expansion, linearization of the propagator yields

P (tk+1, tk) = P (tk, tk) + Δt · Pt(tk, tk) + O((Δt)2), Δt → 0

with P (tk, tk) = 1 and Pt(tk, tk) = b(tk). Replacing the propagator by its lineariza-
tion, we obtain the approximate solution

ψΔt(t) = (1 + b(tN−1Δt)) · · · (1 + b(t1)Δt)(1 + b(t0)Δt)ψ0.

A standard result in numerical analysis tells us that this approximation method is
convergent, that is,

lim
Δt→0

ψΔt(t) = ψ(t), t ≥ t0.

For example, fix the real number B, and set b(t) := B for all t. Then we get the
well-known classical formula for Euler’s exponential function:

lim
Δt→0

(1 + BΔt)N ψ0 = eB(t−t0)ψ0, (7.271)

which is valid for all times t ∈ R and all ψ0 ∈ R.
A general approximation principle for the propagators of time-

depending processes. The argument above can be generalized to fairly general
time-depending processes. For example, the limit (7.271) exists on a Banach space X
for all ψ0 ∈ X if B : X → X is a linear bounded operator. More general functional-
analytic results can be found in P. Lax, Functional Analysis, Sect. 34.3, Wiley, New
York, 2002.123 The situation is more subtle if B is an unbounded operator, as in
quantum mechanics. In what follows, we will only use formal arguments.

From the propagator to the kernel. Let K be the kernel of the Feynman
propagator operator P (t, t0) = e−i(t−t0)H/� . Then the unique solution

ψ(t) = P (t, t0)ψ0

of the Schrödinger equation (7.262) on page 608 can be represented by the integral
formula

ψ(x, t) =

Z

R

K(x, t; y, t0)ψ0(y)dy, x ∈ R, t ≥ t0.

It remains to compute the propagator kernel K. Our goal is the key formula (7.274)
below. The propagator possesses the linearization

123 The proof uses the uniform boundedness theorem in functional analysis.
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P (tk+1, tk) = I − iΔt

�
H + O((Δt))2, Δt → 0.

We set PΔt(tk+1, tk) := I− iΔt
�

H. It follows from the causal product formula (7.264)
on page 609 together with the approximation principle above that

P (t, t0) = lim
Δt→0

PΔt(tN , tN−1) · · ·PΔt(t1, t0).

Thus, we obtain

P (t, t0) = lim
Δt→0

„

I − iΔt

�
H

«N

.

The kernel product formula (7.245) on page 600 tells us that

K(x, t; x0, t0) =

Z

RN−1
K(x, t; qN−1, tN−1) × · · ·

×K(q2, t2; q1, t1)K(q1, t1; x0, t0)dqN−1 · · · dq2dq1. (7.272)

From the kernel to the symbol. The Hamiltonian operator H has the symbol
a(q, p). Thus, the operator PΔt(tk+1, tk) has the symbol 1− iΔt

�
a(q, p). By the kernel

formula (7.251) of the Weyl calculus on page 602, we obtain

KΔt(x, t0 + Δt; y, t0) =

Z

R

eip(x−y)/�

»

1 − iΔt

�
a
“x + y

2
, p
”

–

dp

h
.

Up to terms of order O(Δt)2) as Δt → 0, this yields

KΔt(x, t0 + Δt; y, t0) =

Z

R

eip(x−y)/� exp

»

− iΔt

�
a
“x + y

2
, p
”

–

dp

h
.

Since tk+1 = tk + Δt, we also get the approximation KΔt(qk+1, tk+1; qk, tk) being
equal to

Z

R

eipk+1(qk+1−qk)/� exp

»

− iΔt

�
a
“qk+1 + qk

2
, pk+1

”

–

dpk+1

h

where k = 0, 1, . . . , N − 1.
The Feynman path integral. Using (7.272) and replacing K by KΔ , we

obtain the approximation

KΔt(x, t; y, t0) =

Z

R2N−1
eiSN /� dpN

h

N−1
Y

k=1

dqkdpk

h

with

SN :=
h

pN
qN − qN−1

Δt
+ . . . + p1

q1 − q0

Δt

−a( 1
2
(qN + qN−1), pN ) + . . . + a( 1

2
(q1 + q0), p1)

i

· Δt.

Since the mid-point 1
2
(qk + qk−1) of the interval [qk, qk−1] appears, we call this the

mid-point approximation.
Now we pass over to the limit Δt → 0 (i.e., N → ∞) in a formal way. Let S[q, p]

denote the formal limit limN→∞ SN . Then
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S[q, p] =

Z t

t0

[p(τ)q̇(τ) − a(q(τ), p(τ))]dτ. (7.273)

This is the action along the classical path q = q(τ), p = p(τ) in the phase space on
the time interval t0 ≤ τ ≤ t. Furthermore, we write the limit limΔt→0 KΔt(x, t; y, t0)
in the following symbolic form:124

K(x, t; y, t0) =

Z

C{t0,t}
eiS[q,p]/� · dp(t0)

h

Y

t0<τ≤t

dq(τ)dp(τ)

h
(7.274)

for all points x, y ∈ R and all time intervals [t0, t]. Here, we formally sum over
all continuous paths q = q(τ), p = p(τ), t0 ≤ τ ≤ t, which satisfy the boundary
condition

q(t0) = y, q(t) = x.

The magic formula (7.274) relates classical mechanics to quantum mechanics by
means of the classical action.

The crux with differentiable paths. The reader should note that the action
S[q, p] from (7.273) only makes sense if the path q = q(t), p = p(t) is sufficiently
smooth. However, our formal argument above also takes highly irregular paths into
account, which are not differentiable at all. Such irregular paths are typical for
the Brownian motion of tiny particles immersed in a liquid. In fact, in Wiener’s
theory of Brownian motion, the probability is equal to one for the realization of
continuous, but not differentiable paths (see Sect. 7.11.4). Then the action S[q, p]
does not make any sense, in terms of classical analysis. This indicates that our
formal approach is not well defined. Fortunately enough, it turns out that the main
contribution to the Feynman path integral (7.274) comes from the paths which
satisfy the classical equation of motion in mechanics. This is the main idea behind
the WKB approximation method (see Sect. 7.10).

The symbol of the Feynman propagator. Let symP (q, p ; t, t0) denote the
symbol of the propagator operator P (t, t0). By the kernel formula (7.252) of the
Weyl calculus on page 602, we get

symP (q, p ; t, t0) =

Z

R

eirp/� K(q − 1
2
r, q + 1

2
r)dr (7.275)

for all q, p ∈ R and all t ≥ t0. Recall that the propagator kernel K(x, t; y, t0) can be
represented by the Feynman path integral (7.274) above.

7.13.2 The Relation between the Scattering Kernel and the
Propagator Kernel

In perturbation theory, the scattering of free quantum particles under the
action of a force is described by the Heisenberg scattering operator. The
kernel of the scattering operator can be represented by the propagator
kernel. This is the second magic formula in quantum physics.

Folklore

Let S be the kernel of the propagator operator S(t, t0). This means that the function
ϕ(t) := S(t, t0)ϕin can be represented by the integral formula

124 We also briefly write K(x, t; y, t0) =
R

C{t0,t} eiS[q,p]/� DqDp.
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ϕ(x, t) =

Z

R

S(x, t; y, t0)ϕin(y)dy, x ∈ R, t ≥ t0.

This yields the transition amplitude

〈ϕout|S(t, t0)ϕin〉 =

Z

R2
ϕout(x)S(x, t; y, t0)ϕin(y)dxdy,

which generates the crucial transition probability |〈ϕout|S(t, t0)ϕin〉|2 from (7.266).
It remains to compute the kernel S(x, t; y, t0). Our goal is the key formula (7.276)
below which relates the scattering kernel to the propagator kernel computed in the
preceding section. The point is that there exists a simple relation between the sym-
bol of the scattering operator and the symbol of the Feynman propagator operator.
By the Weyl calculus, this implies the desired relation between the scattering kernel
S(x, t; y, t0) and the Feynman propagator kernel K(x, t; y, t0).

The symbol of the scattering operator. Let symS(q, p ; t, t0) denote the
symbol of the scattering operator

S(t, t0) := eitHfree/�P (t, t0)e
−it0Hfree/� , t ≥ t0.

By the Weyl calculus, we have to replace this operator product by the Moyal star

product for the corresponding symbols. Note that e−itp2/2m� is the symbol of the
free propagator e−itHfree/� . Hence

symS(q, p ; t, t0) = eitp2/2m� ∗ symP (q, p ; t, t0) ∗ e−it0p2/2m� .

Using formula (7.261) for the Moyal star product on page 607 together with the
associativity of the Moyal star product, we obtain the key relation for the symbols:

symS(q, p ; t, t0) =

Z

R2
A(q, p ; t, t0; q1, p1) symP (q1, p ; t, t0) dq1dp1.

(7.276)

Here, the kernel A(q, p ; t, t0; q1, p1) is given by the following formula:

1

π�
exp

»

it(p1 − 2p)2

2m�
− it0p

2
1

2m�
+

2i(q − q1)(p − p1)

�

–

.

The explicit computation of (7.276) will be performed in Problem 7.32. According
to (7.275), the symbol symP is given by a Feynman path integral which depends
on the classical action.

The kernel of the scattering operator. Finally, it follows from the kernel
formula (7.251) of the Weyl calculus on page 602 that

S(x, t; y, t0) =
1

2π�

Z

R

eip(x−y)/� symS

“x + y

2
, p
”

dp (7.277)

for all x, y ∈ R and all t ≥ t0. This is the magic formula for the kernel of the
scattering operator.
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7.14 The Poincaré–Wirtinger Calculus

The Poincaré–Wirtinger calculus reformulates real analysis in terms of the
language of complex analysis. This is very useful for modern quantum
theory. Folklore

Let f : R
2 → C be a smooth complex-valued function on the real plane R

2. We set

z := x + iy, z̄ := x − iy,

and we write f(x, y) := u(x, y) + iv(x, y) where u : R
2 → R is the real part and

v : R
2 → R is the imaginary part of f . The main idea of the Poincaré–Wirtinger

calculus is to introduce the following two differential operators:

∂

∂z
:=

1

2

„

∂

∂x
− i

∂

∂y

«

,
∂

∂z̄
:=

1

2

„

∂

∂x
+ i

∂

∂y

«

. (7.278)

This yields

∂f(x, y)

∂z
=

1

2
(ux(x, y) + vy(x, y)) +

i

2
(vx(x, y) − uy(x, y)),

∂f(x, y)

∂z̄
=

1

2
(ux(x, y) − vy(x, y)) +

i

2
(vx(x, y) + uy(x, y)).

Therefore, the following two conditions are equivalent:

(i) ∂f
∂z̄

= 0 on R
2.

(ii) ux = vy and uy = −vx on R
2 (Cauchy–Riemann differential equations).

In this case, we say that the function f is holomorphic on R
2. In terms of complex

function theory, this means that the function z �→ f(x, y) is holomorphic on the
complex plane C, in the classical sense. Similarly, the following two conditions are
equivalent:

(i) ∂f
∂z

= 0 on R
2.

(ii) ux = −vy and uy = vx on R
2 (anti-Cauchy–Riemann differential equations).

In this case, we say that the function f is anti-holomorphic on R
2. This is equivalent

to the fact that the function z �→ f(x, y)† is holomorphic on C.
Example. (a) For f(x, y) := x2 + y2, we get

∂f(x, y)

∂z
= x − iy,

∂f(x, y)

∂z̄
= x + iy.

The function f is neither holomorphic nor anti-holomorphic on R
2.

(b) For f(x, y) := (x + iy)2, we get

∂f(x, y)

∂z
= 2(x + iy),

∂f(x, y)

∂z̄
= 0.

The function f is holomorphic on R
2.

(c) For f(x, y) := (x − iy)2, we get

∂f(x, y)

∂z̄
= 2(x − iy),

∂f(x, y)

∂z
= 0.

The function f is anti-holomorphic on R
2.
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Mnemonic elegance. The results (a)–(c) above can be reformulated as follows.
(a) For f(x, y) = x2 + y2 = zz̄, we get

∂f(x, y)

∂z
= z̄ = x − iy,

∂f(x, y)

∂z̄
= z = x + iy.

(b) For f(x, y) := (x + iy)2 = z2, we get

∂f(x, y)

∂z
= 2z = 2(x + iy),

∂f(x, y)

∂z̄
= 0.

(c) For f(x, y) := (x − iy)2 = z̄2, we get

∂f(x, y)

∂z̄
= 2z̄ = 2(x − iy),

∂f(x, y)

∂z
= 0.

These results are formally obtained by considering f as a function of the two inde-
pendent variables z and z̄ and by using formal partial differentiation with respect
to z and z̄.

For a general smooth function f : R
2 → C, we proceed as follows. Using the

representations x = (z + z̄)/2 and y = (z − z̄)/2i, we define

F (z, z̄) := f
“z + z̄

2
,
z − z̄

2i

”

. (7.279)

Considering formally the function F as a function of the independent variables z
and z̄, the chain rule tells us that

∂F (z, z̄)

∂z
=

1

2
fx

“z + z̄

2
,
z − z̄

2i

”

+
1

2i
fy

“z + z̄

2
,
z − z̄

2i

”

=
1

2
fx(x, y) − i

2
fy(x, y),

and
∂F (z, z̄)

∂z̄
=

1

2
fx(x, y) +

i

2
fy(x, y).

This coincides with definition (7.278). The following observation is useful.

• The function f is holomorphic on R
2 iff F is independent of z̄ and z �→ F (z) is

holomorphic on C
2. Then ∂f(x,y)

∂z
= F ′(z) for all z = x + iy on C.

• The function f is anti-holomorphic on R
2 iff F is independent of z and ζ �→ F (ζ)

is holomorphic on C
2. Then ∂f(x,y)

∂z̄
= F ′(z̄) for all z̄ = x − iy on the complex

plane C.

In later volumes, the Poincaré–Wirtinger calculus will play a crucial role in studying
the following subjects: Kähler geometry, conformal field theory, and string theory.

7.15 Bargmann’s Holomorphic Quantization

Our goal is to realize the commutation relation

a−a+ − a+a− = I (7.280)

together with (a−)† = a+ by elementary operators on a Hilbert space B(C) of
holomorphic functions. The precise formulation will be given in Theorem 7.58 below.
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In terms of physics, the operator a+ (resp. a−) is a creation (resp. annihilation)
operator.125

The Bargmann–Fock space B(C). We start with the inner product

〈F |G〉 :=
1

π

Z

R2
F (z)†G(z)e−zz†

dxdy. (7.281)

By definition, the space B(C) consists of all holomorphic functions F : C → C with
〈F |F 〉 < ∞. This is a complex Hilbert space with respect to the inner product
(7.281). The set of polynomials z �→ F (z) is a dense subset of B(C). We define the
operators a± : D(a±) → B(C) by setting

(a+F )(z) := zF (z) for all z ∈ C,

and

(a−F )(z) :=
d

dz
F (z) for all z ∈ C.

More precisely, the domain of definition D(a±) of the operator a± consists of all
functions F ∈ B(C) with a±F ∈ B(C). For example, this is satisfied for all polyno-
mials F . Setting F0(z) := 1 for all z ∈ C, we get 〈F0|F0〉 = 1 and

a−F0 = 0.

In terms of physics, the function F0 is called the ground state (or the vacuum state).
This state does not contain any particles.

Theorem 7.58 (i) For all polynomials F ∈ B(C), we get

(a−a+ − a+a−)F = F.

This is the precise formulation of the commutation relation (7.280) .
(ii) For all polynomials F, G ∈ B(C), we get

〈a−F |G〉 = 〈F |a+G〉.

This means that (a−)† = a+, in the sense of a formally adjoint operator.

Proof. Ad (i). Note that (a+a−F )(z) = zF ′(z) and

(a−a+F )(z) = (zF (z))′ = F (z) + zF ′(z).

Ad (ii). We will use the Poincaré–Wirtinger calculus introduced on page 616. Recall

that z̄ := z†. Since G is holomorphic, ∂G(z)
∂z̄

= 0. By the product rule,

∂

∂z̄

`

G(z)e−zz̄´ =
∂G(z)

∂z̄
e−zz̄ − G(z)ze−zz̄ = −G(z)ze−zz̄.

125 The proofs can be found in the classical paper by V. Bargmann, On a Hilbert
space of analytic functions and an associated integral transform, Commun. Pure
and Appl. Math. 14 (1961), 187–214. See also the last chapter of the monograph
by F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.
The basic idea goes back to V. Fock, Generalizing and solving Dirac’s statistical
equation, Z. Phys. 49 (1928), 339–357 (in German).
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Hence

∂

∂z̄

“

F (z)†G(z)e−zz̄
”

=

„

∂

∂z̄
F (z)†

«

G(z)e−zz̄ − F (z)†G(z)ze−zz̄

=

„

∂

∂z
F (z)

«†
G(z)e−zz̄ − F (z)†(zG(z))e−zz̄.

Because of the polynomial growth of F and G at infinity, we get126

lim
R→∞

Z

x2+y2≤R2

∂

∂z̄

“

F (z)†G(z)e−zz̄
”

dxdy = 0.

This yields the claim. �

Orthonormal basis. The functions

Fn :=
(a+)nF0√

n!
, n = 0, 1, . . .

form an orthonormal basis of the Hilbert space B(C). Explicitly, Fn(z) = zn/
√

n!
for all z ∈ C. In terms of physics, Fn represents a (normalized) state of n particles.
Intuitively, this state is generated from the vacuum state F0 by n-fold application
of the creation operator a+ to F0.

Wick operators. Let αkn be complex numbers for k, n = 0, . . . , m, where
m = 0, 1, . . . . For all polynomials z �→ F (z), define

AF :=
m
X

k,n=0

αkn(a+)k(a−)nF.

Note that the powers of the annihilation operator a− stand on the right. In particu-
lar, αkn(a+)k(a−)nF0 = 0 if n = 1, 2, . . .. The operators A are called Wick operators
on the Hilbert space B(C) (or normally ordered operators). The polynomial

symA(z, ζ) :=
m
X

k,n=0

αknzkζn

with respect to the complex variables z and ζ is called the symbol of the Wick
operator A. As we will show later on, Wick operators play a crucial role for de-
scribing physical quantities in quantum field theory (e.g., collision processes) and
in quantum statistics (e.g., superfluidity and superconductivity).

The Bargmann–Fock space B(Cs). We want to apply the preceding con-
struction to s species of particles. To this end, we define 〈F |G〉 by

1

πs

Z

R2s

F (z1, . . . , zs)
†G(z1, . . . , zs)e

−
Ps

k=1 zkz
†
kdx1 · · · dxsdy1 · · · dys,

where zk := xk + iyk, and xk, yk ∈ R for all k = 1, . . . , s. By definition, the Fock–
Bargmann space B(Cs) consists of all holomorphic functions127

126 Note the following. Since ∂
∂z

= 1
2

“

∂
∂x

− i ∂
∂y

”

, the Gaussian integral theorem

transforms this integral into a boundary integral (over the sphere of radius R),
which goes to zero as R → ∞.

127 This means that F : C
s → C is a power series expansion (with complex coeffi-

cients) which is absolutely convergent for all complex numbers z1, . . . , zs.



620 7. Quantization of the Harmonic Oscillator

F : C
s → C

with 〈F |F 〉 < ∞. The space B(Cs) is a complex Hilbert space equipped with the
inner product 〈F |G〉. The set of polynomials (z1, . . . , zs) �→ F (z1, . . . , zs) (with com-
plex coefficients) is a dense subset of B(Cs). Let k = 1, . . . , s. For all polynomials
F , define

(a+
k F )(z1, . . . , zs) := zkF (z1, . . . , zs), (a−

k F )(z1, . . . , zs) :=
∂F (z1, . . . , zs)

∂zk
,

where z1, . . . , zs ∈ C. Then, for all polynomials F and all j, k = 1, . . . , s, we have
the commutation relations

(a−
j a+

k − a+
k a−

j )F = δjkF

together with (a−
j a−

k − a−
k a−

j )F = (a+
j a+

k − a+
k a+

j )F = 0. We briefly write

[a−
j , a+

k ]− = δjkI, [a−
j , a−

k ]− = [a+
j , a+

k ]− = 0, j, k = 1, . . . , s.

Moreover, for all polynomials F, G, we have

〈a−
k F |G〉 = 〈F |a+

k G〉, k = 1, . . . , s.

Hence (a−
k )† = a+

k for k = 1, . . . , s in the sense of formal adjoint operators.
In the monograph by L. Faddeev and A. Slavnov, Gauge Fields, Benjamin,

Reading, Massachusetts, 1980, it is emphasized that the Feynman path integral
based on Bargmann quantization is very convenient for studying the quantization
of the Standard Model in particle physics (Faddev–Popov quantization of gauge
theories). We will investigate this in Vol. V.

Application to the quantized harmonic oscillator. We want to show that
the use of Bargmann’s holomorphic quantization allows us immediately to obtain
the energy spectrum of the quantized harmonic oscillator. Motivated by Sect. 7.3.1
on page 443, we use the Hamiltonian

H =
P 2

2m
+

mω2Q2

2

of the harmonic oscillator, and we set

Q :=
x0√

2
(a+ + a−), P :=

i�

x0

√
2
(a+ − a−)

with x0 :=
q

�

mω
. It follows from a−a+ − a+a− = I that QP − PQ = i�I and

H = �ω(a+a− + 1
2
).

Setting Fn(z) := zn, we get a+a−Fn = z d
dz

Fn = nFn. Therefore, introducing

En := �ω(n + 1
2
), we obtain

HFn = EnFn, n = 0, 1, . . .



7.16 The Stone–Von Neumann Uniqueness Theorem 621

7.16 The Stone–Von Neumann Uniqueness Theorem

The name “Heisenberg commutation relation” is a bit of a misnomer; the
relations were in fact first formulated in their modern form not by Heisen-
berg (1925), but by Born and Jordan (1925) and by Dirac (1925) in the
one-dimensional case and in the “Dreimännerarbeit” (three-man work) by
Born, Heisenberg and Jordan (1926) and by Dirac (1926) in the multi-
dimensional case. However, it is true that they grew out of the original
ground-breaking work of Heisenberg (1925), though one would have to
examine Heisenberg’s paper very carefully to find anything remotely sug-
gesting the commutation relations.128

Jonathan Rosenberg, 2004

In this chapter, we have based quantum mechanics on the Born–Heisenberg–Jordan
commutation relation

QP − PQ = i�I. (7.282)

We want to show that, in an appropriate sense, the construction of the the-
ory is unique. That is, each realization of quantum mechanics is equivalent to
Schrödinger’s approach. This follows from the Stone–von Neumann uniqueness the-
orem below. Moreover, we want to show that this problem is closely related to
the following mathematical topics: functional analysis (operator theory on Hilbert
spaces), symplectic geometry, C∗-algebras, functors between categories (the Weyl
quantization functor), Lie algebras (the Heisenberg algebra) and Lie groups (the
Heisenberg group). The main trick is to replace (7.282) by the Weyl relation (7.283)
below. This way, we circumvent the technical subtlety related to the fact that the
operators Q and P are not defined on the total Hilbert space. The Weyl relation
refers to the unitary operators U(a) = eiaP/� and V (b) = eibQ defined on the to-
tal Hilbert space. Here, a and b are real parameters. This exponentiation is an
infinite-dimensional variant of the passage from Lie algebras to Lie groups.

7.16.1 The Prototype of the Weyl Relation

Prototype. Consider the motion of a quantum particle on the real line. Choose the
real numbers a and b. For each wave function ψ ∈ L2(R), we define the translation
operator

(U(a)ψ)(x) := ψ(x + a), x ∈ R,

and the phase operator

(V (b)ψ)(x) := eibxψ(x), x ∈ R.

Then, we have the so-called Weyl relation129

128 See the references given on page 673ff. The fascinating (and surprising) discov-
ery of the commutation relation by Born after reading Heisenberg’s paper is
described on page 64 of Vol. I.
J. Rosenberg, A selective history of the Stone–von Neumann Theorem. In: Opera-
tor algebras, quantization, and noncommutative geometry, Contemporary Math-
ematics 365, pp. 123–158, Amer. Math. Soc., Providence, Rhode Island, 2004
(reprinted with permission).

129 H. Weyl, Quantum mechanics and group theory, Z. Physik 46 (1928), 1–47 (in
German).
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U(a)V (b) = eiabV (b)U(a) for all a, b ∈ R. (7.283)

In fact, (U(a)V (b)ψ)(x) = U(a)(eibxψ(x)). This is equal to

eib(x+a)ψ(x + a) = eiabV (b)U(a)ψ(x).

Using the notion of strongly continuous one-parameter unitary group introduced
on page 506, the following holds:

{U(a)}a∈R and {V (b)}b∈R are strongly continuous one-parameter unitary
groups on the Hilbert space L2(R).

The Born–Heisenberg–Jordan commutation relation. Let the operators
Q : D(Q) → L2(R) and P : D(P ) → L2(R) be the self-adjoint position and
momentum operator, respectively, introduced in Sect. 7.6.4 on page 518. Then, for
any test function ψ ∈ S(R), we get

Pψ(x) = −i�
d

dx
ψ(x) = −i�

d

da
U(a)ψ(x)|a=0

and

Qψ(x) = xψ(x) = −i
d

db
V (b)ψ(x)|b=0.

Differentiating successively the Weyl relation

(U(a)V (b) − eiabV (b)U(a))ψ(x) = 0

with respect to the parameter a at the point a = 0 and with respect to b at b = 0,
we get

(QP − PQ)ψ = i�ψ. (7.284)

Therefore, the Born–Heisenberg–Jordan commutation relation (7.284) can be re-
garded as the infinitesimal variant of the Weyl relation (7.283). In terms of the
Stone theorem on page 506,

U(a) = eiaP/� , V (b) = eibQ, a, b ∈ R.

The Heisenberg algebra AHeis. Consider the linear operators

Q, P, �iI : S(R) → S(R).

Explicitly, (Qψ)(x) := xψ(x), (Pψ)(x) := −i� d
dx

ψ(x), and �iIψ(x) := �iψ(x) for
all x ∈ R and all ψ ∈ S(R). Set

AHeis := {aQ + bP + c�iI : a, b, c ∈ R}.

This is a 3-dimensional real Lie algebra with respect to the following Lie products130

[Q, P ]− = �iI, [Q, �iI]− = [P, �iI]− = 0.

Trivially, we have [Q, Q]− = [P, P ]− = [�iI, �iI]− = 0. This Lie algebra is called
the Heisenberg Lie algebra (or briefly the Heisenberg algebra).

The realization of the Heisenberg algebra as a matrix Lie algebra. Let
us introduce the matrices

130 Recall that [A, B]− := AB − BA.
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A :=

0

B

@

0 1 0

0 0 0

0 0 0

1

C

A

, B :=

0

B

@

0 0 0

0 0 1

0 0 0

1

C

A

, C :=

0

B

@

0 0 1

0 0 0

0 0 0

1

C

A

.

Then, we have the Lie products

[A, B]− = C, [A, C]− = [B, C]− = 0.

Consequently, the set of all matrices

aA + bB + cC =

0

B

@

0 a c

0 0 b

0 0 0

1

C

A

, a, b, c ∈ R

forms a real 3-dimensional Lie algebra denoted by sut(3, R).

The Heisenberg Lie algebra AHeis is isomorphic to the Lie algebra sut(3).

This isomorphism is given by the map aQ + bP + c�iI �→ aA + bB + cC. All the
matrices

0

B

@

1 a c

0 1 b

0 0 1

1

C

A

, a, b, c ∈ R

form a group (with respect to matrix multiplication). This Lie group is denoted by
SUT (3, R) (group of special upper triangular real (3 × 3)-matrices).

The Lie algebra of the Lie group SUT (3, R) is equal to sut(3, R).

For more details, we refer to both Sec. 7.6ff of Vol. I and to Baker (2002).
The universal enveloping algebra of the Heisenberg algebra. Again

consider the operators Q, P, �iI : S(R) → S(R). Let E(AHeis) denote the set of all
polynomials in Q, P and �iI with complex coefficients. For example, the operator

a�iI + bP 3 + cP 2Q + dQP

with complex coefficients a, b, c, d is an element of E(AHeis).

• The set E(AHeis) is a complex algebra (with respect to the sum and the product
of operators).

• If A, B ∈ AHeis, then A, B ∈ E(AHeis) and [A, B]− = AB − BA.

That is, the Lie product [., .]− on AHeis can be represented by using the product
on E(AHeis). In terms of the general theory of Lie algebras, the algebra E(AHeis) is
called the universal enveloping algebra of the Heisenberg Lie algebra AHeis.

The Weyl system with respect to the symplectic form ω on the plane
R

2. For all (a, b) ∈ R
2, define

W (a, b) := e−
i
2 abU(a)V (b). (7.285)

Then, for all (a, b), (c, d) ∈ R
2, the following hold:

(i) W (a, b)W (b, c) = e
i
2 ω(a,b;c,d)W (a + c, b + d). Here, we set

ω(a, b; c, d) := (a, b)

 

0 1

−1 0

! 

c

d

!

= det

 

a b

c d

!

= ad − bc.

Note that ω is the symplectic form on the plane R
2.
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(ii) W (a, b)† = W (−a,−b) and W (0, 0) = I.

The operator family {W (a, b)}(a,b)∈R2 is called the Weyl system of R
2. One checks

easily that (7.283), (7.285) imply (i) and (ii). For example, we have

W (a, b)† = e
i
2 abV (b)†U(a)† = e

i
2 abV (−b)U(−a)

= e−
i
2 abU(−a)V (−b) = W (−a,−b).

Conversely, if W is given, then we set U(a) := W (a, 0) and V (b) := W (0, b). Then
(i), (ii) imply (7.283), (7.285).

The Weyl algebra of the Hilbert space L2(R). The linear continuous oper-
ators A : L2(R) → L2(R) form a C∗-algebra A. The C∗-subalgebra of A generated
by {W (a, b) : (a, b) ∈ R

2} is called the Weyl algebra of the Hilbert space L2(R) (see
page 628).

The Heisenberg group GHeis. For all a, b, λ ∈ R, modify the Weyl system by
setting

H(a, b, λ) := eiλW (a, b), a, b, λ ∈ R.

Then, for all a, b, c, d, λ, μ ∈ R, we have the product formula

H(a, b, λ)H(c, d, μ) = H
`

a + c, b + d, λ + μ + 1
2
ω(a, b; c, d)

´

.

This means that the set {H(a, b, λ)}a,b,λ∈R forms a group H. The space R
3 is a

group with respect to the product

(a, b, λ)(c, d, μ) := (a + c, b + d, λ + μ)

for all (a, b, λ), (c, d, μ) ∈ R
3. If we modify this product by setting

(a, b, λ)(c, d, μ) :=
`

a + c, b + d, λ + μ + 1
2
ω(a, b; c, d)

´

,

then R
3 becomes a group which is called the Heisenberg group GHeis.

131 The addi-
tional term 1

2
ω(a, b; c, d) is called a twist. There exists a group epimorphism132

χ : GHeis → H

given by the map (a, b, λ) �→ H(a, b, λ).

The Heisenberg group GHeis is a 3-dimensional Lie group whose Lie algebra
is the Heisenberg algebra AHeis.

Since the Heisenberg group GHeis is arcwise connected and simply connected, it
represents the universal covering Lie group of the Heisenberg Lie algebra AHeis.
By the general theory of Lie groups, the universal covering Lie group Guniversal of
a given Lie algebra L knows everything about all of the Lie groups G whose Lie
algebra is equal to L.

The Heisenberg group is isomorphic to the group SUT (3, R).

131 The definition of the Heisenberg group is not unique in the literature. The Heisen-
berg group is also called the Weyl group in the physical literature. In fact, the
Heisenberg group never appears in the papers written by Heisenberg; this group
was introduced by Weyl.

132 A surjective (resp. injective) group morphism is called group epimorphism (resp.
group monomorphism). The same is true for rings. The general definition of
epimorphisms and monomorphisms in terms of category theory will be considered
in Vol. IV.
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This Lie group isomorphism is given by the map
0

B

@

1 a c

0 1 b

0 0 1

1

C

A

�→ (a, b, c − 1
2
ab).

Central extensions of groups. Let G be a group. The set of all elements A
of G with the property that

AB = BA for all B ∈ G

is called the center C(G) of the group G. The center C(G) is a normal subgroup of
G. The group G is said to be a central extension of the quotient group G/C(G).133

For the Heisenberg group,

C(GHeis) := {(0, 0, λ) : λ ∈ R}.

This center is isomorphic to the additive group R. The map

(a, b, λ) �→ (a, b)

is a group morphism from the Heisenberg group GHeis onto the additive group R
2.

The kernel of the unit element (0, 0) of R
2 is the center C(GHeis). Therefore, we

have the group isomorphism

GHeis/C(GHeis) � R
2.

Consequently, the Heisenberg group GHeis is a central extension of the additive
group R

2.
Central extensions of Lie algebras. Let X be a linear space. Introducing

the Lie product [A, B] := 0 for all A, B ∈ X, we obtain the trivial Lie algebra X.
In this sense, the linear spaces R

n (n = 1, 2, . . .) become trivial Lie algebras.
Let L be a Lie algebra. The set of all elements A of L with the property that

[A, B] = 0 for all B ∈ L

is called the center C(L) of L. The center C(L) is an ideal of L. The Lie algebra L is
said to be a central extension of the quotient Lie algebra L/C(L).134 For example,
the center of the Heisenberg algebra is given by

C(AHeis) = {c�iI : c ∈ R}.

This center is isomorphic to R. The map

aQ + bP + c�iI �→ (a, b)

is a Lie algebra morphism from the Heisenberg algebra AHeis onto the trivial Lie
algebra R

2. The kernel of the zero element (0, 0) of R
2 is the center C(AHeis).

Therefore, we have the Lie algebra isomorphism

AHeis/C(AHeis) � R
2.

133 More general, if H is a subgroup of C(G), then the quotient group G/H is called
a central extension of the group G by the group H.

134 More general, if J is a subalgebra of C(L), then the Lie algebra L is called a
central extension of the Lie algebra L/J by the Lie algebra J .
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Consequently, the Heisenberg algebra AHeis is a central extension of the trivial Lie
algebra R

2.
Central extensions of Lie groups and Lie algebras play an important role in

quantum physics (e.g., the Bargmann theorem on the lifting of projective quantum
symmetries to unitary symmetries, and the Virasoro algebra in both conformal
quantum field theory and string theory). As an introduction, we recommend M.
Schottenloher, A Mathematical Introduction to Conformal Field Theory, Springer,
Berlin, 1997.

7.16.2 The Main Theorem

Theorem 7.59 Let {U(a)}a∈R and {V(b)}b∈R be strongly continuous one-parame-
ter unitary groups on the complex separable non-trivial Hilbert space X.135 Suppose
that the Weyl relation

U(a)V(b) = eiabV(b)U(a) for all a, b ∈ R

is satisfied. Then the operators U(a) (resp. V(b)) are unitarily equivalent to direct
sums of translation (resp. phase) operators on L2(R).

More precisely, the following hold.
(i) Invariant subspaces: There exists a finite or countable family X1, X2, . . . of

pairwise orthogonal, closed, linear subspaces of the Hilbert space X with the direct
sum decomposition

X =
M

k

Xk.

All of the spaces X1, X2, . . . are invariant under the operators U(a) and V(b).
(ii) Unitary equivalence: For all a, b ∈ R, the operator U(a) (resp. V(b)) is

unitarily equivalent to the translation operator U(a) (resp. the phase operator V (b))
on the Hilbert space L2(R) introduced on page 622. This means that there exist
unitary operators Uk : Xk → L2(R) such that, for all k, the following diagram is
commutative:

Xk

Uk

��

U(a) �� Xk

Uk

��
L2(R)

U(a) �� L2(R).

The same is true if we replace U(a) and U(a) by V(b) and V (b), respectively.
The proof can be found in Putnam (1967), p. 65. Theorem 7.59 is called the

Stone–von Neumann uniqueness theorem. This theorem was announced by Stone
in 1930. The first proof was given by

J. von Neumann, On the uniqueness of the Schrödinger operators, Math.
Ann. 104 (1931), 570–578 (in German).

135 A Hilbert space X is called trivial iff X = {0}.
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7.16.3 C∗-Algebras

A crucial strategy in modern mathematical physics consists in using
C∗-algebras.

Folklore

The simplest case of a C∗-algebra is the set C of complex numbers equipped with
the operations z + w, zw, z†, and |z|. Since zw = wz, this C∗-algebra is called
commutative.

Let n = 2, 3, . . . The prototype of a (noncommutative) C∗-algebra is the set of
complex (n × n)-matrices equipped with the operations A + B, AB, A† (adjoint

matrix), αA (α ∈ C), and ||A|| :=
p

tr(AA†) (norm). The unit matrix I is the unit

element. Traditionally, instead of A† and z† we write A∗ and z∗, respectively.
Definition of C∗-algebra. Let A be a complex associative algebra which is

also a complex Banach space. In addition, suppose that there exists a map A �→ A∗

(called the ∗-map) such that the following hold for all A, B ∈ A and all complex
numbers α, β:

(i) A∗ ∈ A (adjoint element);
(ii) (αA + βB)∗ = α†A∗ + β†B∗ (the ∗-map is antilinear);
(iii) (A∗)∗ = A (the ∗-map is an involution);
(iv) (AB)∗ = B∗A∗;
(iv) ||AB|| ≤ ||A|| · ||B||;
(v) ||A∗|| = ||A|| and ||A∗A|| = ||A||2.
Then A is called a C∗-algebra.

The C∗-algebra is called commutative iff AB = BA for all A, B ∈ A. Further-
more, the C∗-algebra is called unital iff there exists a unit element I of A with
||I|| = 1.

C∗-subalgebra. A subset S of a C∗-algebra A is called a C∗-subalgebra of A
iff it is a C∗-algebra with respect to the operations on A.

If S is a subset of a C∗-algebra A, then there exists a (uniquely determined)
smallest C∗-subalgebra B of A which contains the set S. Explicitly, B is the in-
tersection of all C∗-subalgebras of A which contain the set S. We say that B is
generated by S.

By definition, a C∗-ideal of the C∗-algebra A is a C∗-subalgebra I of A which
has the additional property that AB ∈ I and BA ∈ I for all A ∈ A, B ∈ I.

Examples. (a) The function space C(M). Let M be a nonempty compact
separated topological space (e.g. M = [0, 1] or, more generally, M is a compact
subset of R

n, n = 1, 2, . . . ). The space C(M) of all continuous functions

f : M → C

is a unital C∗-algebra with respect to the norm

||f || := max
x∈M

|f(x)|.

Moreover, we set f∗(x) := f(x)† for all x ∈ M (complex-conjugate function). The
function f(x) := 1 for all x ∈ M is the unit element of C(M).

(b) The operator space L(X, X). Let X be a complex Hilbert space. The space
L(X, X) of all linear continuous operators

A : X → X

is a C∗-algebra with respect to the operator norm
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||A|| := sup
||ψ||≤1

||Aψ||

and A∗ := A† (adjoint operator). If X �= {0}, then the C∗-algebra L(X, X) is
unital, where the unit operator I is the unit element.

(c) The Weyl algebra of the Hilbert space L2(R). Let X := L2(R). The smallest
C∗-subalgebra of L(X, X), which contains the Weyl operators W (a, b), a, b ∈ R, is
called the Weyl algebra of L2(R). Explicitly, this is the closure of the set

span{W (A, B) : a, b ∈ R}.

The closure is to be understood in the sense of the Banach space L(X, X).
The Gelfand–Naimark theorem below shows that examples (a) and (b) above

are typical for C∗-algebras and commutative C∗-algebras, respectively.
C∗-morphism. Let A and B be C∗-algebras. The map

χ : A → B

is called a C∗- morphism iff it respects the algebra structure, the ∗-operation, and
the norm structure, that is, for all A, B ∈ A and all complex numbers α, β, we have

• χ(αA + βB) = αχ(A) + βχ(B),
• χ(AB) = χ(A)χ(B),
• χ(A)∗ = χ(A), and
• ||χ(A)|| = ||A||.
Bijective C∗-morphisms are called C∗-isomorphisms. Moreover, C∗-isomorphisms
χ : A → A from a C∗-algebra A onto itself, are called C∗-automorphisms.

The category of C∗-algebras. In order to describe the common features of
mathematical structures, one uses categories in mathematics. A category consists
of objects and morphisms.

• The objects of the category of C∗-algebras are the C∗-algebras,
• and the morphisms of the category of C∗-algebras are the C∗-morphisms.

The general setting of category theory will be investigated in Vol. IV on quantum
mathematics.

The Gelfand–Naimark structure theorem. In 1943, Gelfand (born 1913)
and Naimark (1909–1978) proved the following crucial result.

Theorem 7.60 (i) Each C∗-algebra is C∗-isomorphic to some C∗-subalgebra of
L(X, X), where X is some Hilbert space.

(ii) Each commutative unital C∗-algebra A is C∗-isomorphic to a C∗-algebra
C(M) of continuous functions on some nonempty compact separated topological
space M . Here, M is the space of maximal ideals of the algebra A equipped with an
appropriate topology.

The proof is based on the so-called Gelfand–Naimark–Segal (GNS) construction,
which is basic for algebraic quantum field theory and quantum statistics.136 This
will be considered in Vol. IV. There, we will also show that (ii) above is crucial for
the spectral theory of unitary and self-adjoint operators. For the proofs, we refer

136 I. Gelfand, Normed rings of operators, Mat. Sbornik 9 (1941), 3–24 (in German).
I. Gelfand and M. Naimark, On the embedding of normed rings into the ring of
operators in Hilbert space, Mat. Sbornik 12 (1943), 197–213.
I. Segal, Postulates for general quantum mechanics, Ann. Math. 48 (1947), 930–
948.
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to P. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras,
Vols. 1, Academic Press, New York, 1983.

∗-Algebras. Sometimes it is convenient to replace C∗-algebras by the weaker
notion of ∗-algebra (star algebra). Here, all the properties of a C∗-algebra drop out
which refer to the norm. For example, the complex associative algebra A is called a
∗-algebra iff conditions (i)–(iv) on page 627 are satisfied. Analogously, one obtains
the following terms: ∗-subalgebra, ∗-morphism, ∗-isomorphism, ∗-automorphism,
category of ∗-algebras.

7.16.4 Operator Ideals

In order to give the proof for special cases of Fermat’s last theorem in number
theory, Kummer (1810–1891) introduced so-called ideal numbers.137 Generalizing
this, Dedekind (1831–1916) created the theory of ideals in ring theory. The theory
of operator ideals generalizes this to operator algebras.

Compact operators. Let C : X → X be a linear compact self-adjoint operator
on the complex separable non-trivial Hilbert space X. Then the eigenvectors of C
form a complete orthonormal system in X. Let λ1, λ2, . . . denote the eigenvalues of
C. Then:

• The spectrum of C is a pure point spectrum.
• The operator C is called of trace class iff

P

n |λn| < ∞. In this case, the trace
tr(C) :=

P

n λn is finite. Operators of trace class are also called nuclear operators.

• The operator C is called a Hilbert–Schmidt operator iff
P

n λ2
n < ∞.

Let us generalize this. The linear compact operator A : X → X is called a trace
class (resp. Hilbert–Schmidt) operator iff tr(

√
A∗A) < ∞ (resp. tr(A∗A) < ∞).138

Every trace class operator is a Hilbert–Schmidt operator. If the linear operator
A : X → X is compact on the complex separable Hilbert space X, then there
exist orthogonal systems ϕ1, ϕ2, . . . and ψ1, ψ2, . . . together with positive numbers
μ1, μ2, . . . (called the singular values of the operator A) such that

Aϕ =
X

n

μn〈ϕn|ϕ〉ψn for all ϕn ∈ X.

Explicitly, we choose a complete orthonormal system ϕ1, ϕ2, . . . of eigenvectors of
the self-adjoint compact operator A∗A, that is, A∗Aϕn = λnϕn. Here, λn ≥ for all
n. Moreover, throw away the eigenvectors ϕm with λm = 0, and set μn :=

√
λn, as

well as ψn := λ−1
n Aϕn. Equivalently, we write

A =
X

n

μnψn ⊗ ϕn.

C∗-operator ideals. Consider the C∗-algebra L(X, X) of the linear continuous
operators A : X → X on the complex separable Hilbert space X.

(i) The set of linear compact operators A : X → X forms a C∗-ideal of L(X, X).
This ideal is denoted by Icompact.

137 The famous complete proof of Fermat’s last theorem was given by Wiles in 1994
(see page 17 of the Prologue to Vol. I; we also refer to F. Diamond and J.
Shurman, A First Course in Modular Forms, Springer, Berlin, 2005).

138 Note that the operator A∗A is self-adjoint and compact, and its eigenvalues are
nonnegative.
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(ii) The trace-class operators A : X → X form a C∗-ideal of L(X, X). This ideal
is denoted by Itrace class.

(iii) The Hilbert–Schmidt operators of A : X → X form a C∗-ideal of L(X, X).
This ideal is denoted by IHilbert−Schmidt. We have the inclusions Itrace class ⊆
IHilbert−Schmidt ⊆ Icompact ⊆ L(X, X).

(iv) A ∈ Itrace class iff A = BC with B, C ∈ IHilbert−Schmidt.

For more details, we refer to M. Reed and B. Simon, Methods of Modern Math-
ematical Physics, Vol. I, Sects. VI.5ff, Academic Press, 1972, as well as to the
monographs by R. Schatten, Norm Ideals of Completely Continuous Operators,
Springer, Berlin, 1960, and by A. Pietsch (1978), (2007) quoted on page 601.

7.16.5 Symplectic Geometry and the Weyl Quantization Functor

Functors play a crucial role in modern mathematics and physics.
Folklore

Symplectic linear spaces. A symplectic linear space X is a real linear space
equipped with a symplectic form

ω : X × X → R.

That is, for all a,b, c ∈ X and all real numbers α, β, the following hold:

• ω(a,b) = −ω(b, a) (antisymmetry);
• ω(αa + βb, c) = αω(a, c) + βω(b, c) (bilinearity);
• ω(a,v) = 0 for all v ∈ X implies a = 0 (non-degeneracy).

For example, the space R
2 is a symplectic linear space with respect to the symplectic

form

ω((a, b), (c, d)) :=

˛

˛

˛

˛

˛

a b

c d

˛

˛

˛

˛

˛

= ad − bc, (a, b), (c, d) ∈ R
2. (7.286)

Symplectic morphism. Let X and Y be symplectic linear spaces with the
symplectic forms ω and μ, respectively. The map

χ : X → Y

is called a symplectic morphism iff it is linear and respects the symplectic forms,
that is,

μ(χ(a), χ(b)) = ω(a,b) for all a,b ∈ X.

Bijective symplectic morphisms are called symplectic isomorphisms. Then the in-
verse map is also a symplectic morphism. For example, a symplectic isomorphism
of the plane R

2 onto itself (with respect to the symplectic form (7.286)) is a linear
area-preserving map from R

2 onto itself. The category of symplectic linear spaces
is defined in the following way:

• The objects are symplectic linear spaces,
• and the morphisms are symplectic morphisms.

Weyl algebras. We want to generalize the Weyl algebra of the Hilbert space
L2(R). Let X be a linear symplectic space, and let A be a C∗-algebra with unit
element. The map

W : X → A
is called a Weyl map iff the following hold for all a,b ∈ X:
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(i) W (a)W (b) = e
i
2 ω(a,b)W (a + b);

(ii) W (0) = I;
(iii) W (a)∗ = W (−a).

The subset {W (a) : a ∈ X} of the C∗-algebra A is called a Weyl system. The
smallest C∗-algebra of A which contains a Weyl system is called a Weyl algebra
W(X). This algebra is also called the CCR-algebra of the linear symplectic space
X with the symplectic form ω. Here, ‘CCR’ stands for ‘canonical commutation
relation’.

The existence and uniqueness theorem for Weyl algebras. The following
theorem generalizes the Stone–von Neumann uniqueness theorem.

Theorem 7.61 For each symplectic linear space X, there exists a Weyl algebra
W(X) which is unique, up to C∗-isomorphisms.

Proof. (I) Existence. Let l2(X) denote the space of all functions f : X → C with
at most countable support139 and the property that

X

a∈X

|f(a)|2 < ∞.

The complex linear space l2(X) becomes a complex Hilbert space equipped with

the inner product 〈f |g〉 :=
P

a∈X f(a)†g(a).
Now let us choose the C∗-algebra A consisting of all the linear continuous

operators A : l2(X) → l2(X). For all f ∈ l2(X), we define

(W (a)f)(b) := e−
i
2 ω(a,b)f(a + b), a,b ∈ X.

One checks directly that W (a) ∈ A and that W : X → A is a Weyl map. To
finish the argument, let W(X) be the C∗-subalgebra of A generated by the set
{W (a) : a ∈ X}.

(II) Uniqueness. See Bär et al (2007), p. 121 (see the reference on page 632). �

Theorem 7.62 If σ : X → Y is a symplectic morphism between the symplectic lin-
ear spaces X and Y , then there exists a uniquely determined injective C∗-morphism
W(σ) : W(X) → W(Y ) such that the following diagram is commutative:

X

��

σ �� Y

��
W(X)

W(σ) �� W(Y ).

For the proof, we refer to Bär et al. (2007), p. 122.
The Weyl quantization functor. We have the following two properties:

(F1) W(τ ◦ σ) = W(τ) ◦W(σ);
(F2) W(id) = id.

139 This means that the function f vanishes outside an at most countable subset of
the linear space X.
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More precisely, this means the following. If

X
σ−→ Y

τ−→ Z

is the composition of two symplectic morphisms σ and τ , then this is transformed
into the composition

W(X)
W(σ)−→ W(Y )

W(τ)−→ W(Z)

of the corresponding C∗-morphisms W(σ) and W(τ). Furthermore, the identical
symplectomorphism

X
id−→ X

is transformed into the identical map

W(X)
id−→ W(X)

of the C∗-algebra W(X). In terms of mathematics, the situation (F1), (F2) above
describes a functor W between the category of symplectic linear spaces and the
category of C∗-algebras. This functor is called the Weyl quantization functor.

Perspectives. In general, functors between categories map objects to objects
and morphisms to morphisms such that the two properties (F1), (F2) above are
satisfied. Functors play a fundamental role in the modern theory of mathematical
structures. Typical examples are:

• the homology functor which sends continuous maps between topological spaces
to group morphisms between homology groups,

• and the de Rham cohomology cofunctor140 which sends smooth maps between
manifolds to group morphisms between cohomology groups (i.e. linear maps be-
tween real linear spaces).

This will be studied in later volumes.
It was discovered recently, that functors are the right tool in order to gener-

alize Einstein’s principle of general relativity (also called the covariance principle)
to quantum field theories on curved space-times. This principle postulates that
physics does not depend on the choice of observers. Roughly speaking, the basic
idea is to assign C∗-algebras to the open subsets of globally hyperbolic space-time
manifolds (realization of the Haag–Kastler axioms). The point is that the change
of the space-time manifolds induces a natural change of the assigned C∗-algebras.
Furthermore, two different quantization functors are related to each other by a
natural transformation. We refer to:

R. Brunetti, K. Fredenhagen, and R. Verch, The generally covariant local-
ity principle – a new paradigm for local quantum field theory, Commun.
Math. Phys. 237 (2003), 31–68.

C. Bär, N. Ginoux, and F. Pfäffle, Wave Equations on Lorentzian Mani-
folds and Quantization, European Mathematical Society 2007.

J. Baez and J. Dolan, Categorification, Contemporary Mathematics 230
(1998), 1–36.

The monograph by Bär, Ginoux, and Pfäffle contains a detailed study of the initial-
value problem for normally hyperbolic differential equations on globally hyperbolic
manifolds, together with applications to quantum field theory. This sophisticated
global theory due to Jacques Hadamard (1865–1963), Marcel Riesz (1886–1969) and
Jean Leray (1906–1998) is based on modern differential geometry (the language of
bundles) and the theory of distributions on manifolds. Distributions are needed in
order to handle the strong singularities of the Green’s functions.

140 In contrast to the composition rule (F2) above, a cofunctor F is characterized
by the reverse composition rule F(τ ◦ σ) = F(σ) ◦ F(τ).
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7.17 A Glance at the Algebraic Approach to Quantum
Physics

In this section, we want to discuss a few basic ideas about the algebraic approach
to non-relativistic quantum physics. Further material can be found in the volumes
to follow. The Haag–Kastler theory, that is, the relativistic approach based on local
operator algebras will be studied in Vol. IV on quantum mathematics.

7.17.1 States and Observables

The states and the observables are basic concepts in the description of a
physical system and their description has undergone a drastic fundamental
change in the transition from the classical theory to the quantum theory.141

Huzihiro Araki, 1999

The prototypes of pure states and mixed states. Consider a complex non-
trivial Hilbert space X.

(a) Pure state: Fix ψ ∈ X with ||ψ|| = 1. Define

χ(A) := 〈ψ|Aψ〉 for all A ∈ L(X, X).

Then χ(I) = 1, and χ(A∗A) = 〈ψ|A∗Aψ〉 = 〈Aψ|Aψ〉 ≥ 0. Moreover, we have

χ(A)† = 〈Aψ|ψ〉 = 〈ψ|A∗ψ〉 = χ(A∗).

We call the linear continuous functional χ : L(X, X) → C a vector state (or a
pure state).

(b) Mixed state: Let ψ0, ψ1, . . . be a complete orthonormal system of the Hilbert
space X, and let p0, p1, . . . be real numbers contained in the unit interval [0, 1[
such that

P

k pk = 1. Define142

χ(A) :=
X

k

pk〈ψk|Aψk〉 for all A ∈ L(X, X).

Again, χ(I) = 1 and χ(A∗A) ≥ 0 together with χ(A)† = χ(A∗) for all op-
erators A ∈ L(X, X). The linear continuous functional χ : L(X, X) → C is
called a mixed state. In terms of physics, the pure state ψk is realized with the
probability pk.

(c) Dynamics. If H : D(H) → X is a linear self-adjoint Hamiltonian operator,
then the dynamics of the initial state ψ0 is given by ψ(t) = U(t)ψ0 for all times
t ∈ R, where we set

U(t) := e−itH/� , t ∈ R.

Motivated by 〈U(t)ψ0|AU(t)ψ0〉 = 〈ψ0|U(t)−1AU(t)ψ0〉, we define the operator
Ut : L(X, X) → L(X, X) for all t ∈ R by setting

UtA := U(t)−1AU(t).

141 H. Araki, Mathematical Theory of Quantum Fields, Oxford University Press,
1999.

142 Since |〈ψk|Aψk〉| ≤ ||ψk|| · ||Aψk|| ≤ ||ψk|| · ||A|| · ||ψk|| ≤ ||A||, the series for χ(A)
is convergent.
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The operator Ut is a C∗-isomorphism from the C∗-algebra L(X, X) onto itself.
As usual, such C∗-isomorphisms are also called C∗-automorphisms. Define

χt(A) := χ(UtA) for all A ∈ L(X, X), t ∈ R.

Then the map t → χt corresponds to the map t �→ U(t)ψ0, which describes the
time evolution of the state ψ0.

The general definition in terms of C∗-algebras. Suppose that we are given
a C∗-algebra A with unit element I.

(i) Observables: The self-adjoint elements A of A (i.e., A∗ = A) are called observ-
ables. The C∗-algebra A is called the extended algebra of observables.143

(ii) States: The linear functionals χ : A → C with the normalization condition
χ(I) = 1 and the positivity condition

χ(A∗A) ≥ 0 for all A ∈ A

are called states.144 A state is called mixed iff there exist two different states
χ1 and χ2 such that

χ = λχ1 + (1 − λ)χ2 for some number λ ∈]0, 1[.

Otherwise the state is called pure.
(iii) Measurements of an observable. Let A be an observable, and let χ be a state.

The real number

Ā := χ(A)

is called the measured mean value of the observable A in the state χ. Similarly,
the nonnegative number ΔA given by

(ΔA)2 := χ((A − Ā)2)

is the measured fluctuation of the observable A in the state χ.145 If A and B
are two observables, then the complex number

γ :=
χ
`

(A − Ā)(B − B̄)
´

ΔA ΔB

is called the correlation coefficient in the state χ.146

(iv) Dynamics: By definition, a dynamics on A is a one-parameter group {Ut}t∈R of
C∗-automorphisms of the algebra A. Explicitly, this means that, for all times
t, s ∈ R, the map Ut : A → A is a C∗-automorphism and

Ut+s = UtUs, U0 = id.

This yields the time evolution t �→ χt of a state χ, namely, we define

χt(A) := χ(UtA)) for all A ∈ A, t ∈ R.

143 Note that the algebra A also contains elements which are not observables, in the
sense of the definition given above.

144 It can be shown that states are always continuous. We also have χ(A)† = χ(A∗)
for all A ∈ A. In particular, if A is an observable, then χ(A) is real.

145 Since (A − Ā)∗ = A − Ā, we get χ
`

(A − Ā
´2

) ≥ 0, by (ii).
146 The Schwarz inequality for C∗-algebras tells us that |γ| ≤ 1.
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(v) Thermodynamical equilibrium states (KMS-states): Let β := 1/kT, where k is
the Boltzmann constant, and T is the absolute temperature. By definition, the
state χ is called a KMS-state of temperature T with respect to the dynamics
{Ut}t∈R iff it satisfies the β-KMS condition

χ(AUt(B)) = χ(Ut−iβ�(B)A) for all A, B ∈ A, t ∈ R.

One of the main problems in thermodynamics is the characterization of thermody-
namic equilibrium states. The C∗-algebra approach to thermodynamics is able to
do this. The three letters KMS stand for the names of the physicists Kubo, Martin,
and Schwinger. For the historical background, see the discussion on page 659.

The following is crucial for distinguishing between classical physics and quantum
physics.

The passage from classical physics to quantum physics corresponds to the
passage from commutative algebras to noncommutative algebras.

For example, this also corresponds to the passage from classical information to
quantum information, which represents the theoretical framework for the intended
construction of quantum computers in the future. This will be studied in Vol. IV.
We refer to N. Nielsen and M. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2001.

Orthogonal projections as fundamental observables related to ques-
tions posed by physical experiments. The simplest observables in L(X, X) are
orthogonal projection operators. Let us summarize elementary properties.147 We
set

A := L(X, X).

We assume that X is a complex separable non-trivial Hilbert space. We will use
such a language that later on we can replace L(X, X) by a von Neumann algebra
A which is a factor (see page 657). In the language of von Neumann algebras, the
following properties of orthogonal projections will tell us that L(X, X) is a von
Neumann algebra (more precisely, a factor) of type I.

(i) Orthogonal projections: By definition, an orthogonal projection is an element
of A with P ∗ = P and P 2 = P. Let P(A) denote the set of all orthogonal
projections in A.
Geometrically, this means the following. For any ψ ∈ X, we have the decom-
position

ψ = Pψ + (I − P )ψ

where Pψ is contained in the closed linear subspace P (X) of X, and (I −P )ψ
is contained in the orthogonal complement P (X)⊥.148 By the Pythagorean
theorem,

||ψ||2 = ||Pψ||2 + ||(I − P )ψ||2.
Hence if P �= 0, then ||P || = 1. Conversely, let Y be a linear closed subspace
Y of X. For given ψ ∈ X, the variational problem

||ψ − ϕ|| = min!, ϕ ∈ Y

has a unique solution denoted by Pψ. Then P : X → Y is an orthogonal
projection onto the subspace Y .

147 For the missing proofs, we refer to Zeidler (1995a) (see the references on page
1049), and to F. Riesz and B. Nagy, Functional Analysis, Frederyck Ungar, New
York, 1978.

148 Recall that, for a subset L of the Hilbert space X, the orthogonal complement
is given by L⊥ := {ψ ∈ X : 〈ψ|ϕ〉 = 0 for all ϕ ∈ L}.
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(ii) Partial ordering on P(A): Let Q, P ∈ P(A). We write

Q ≤ P iff PQ = Q.

This is a partial ordering on P(A). Geometrically, this is equivalent to the
inclusion Q(X) ⊆ P (X).

(iii) Expectation values: Let P, Q ∈ P(A). Then,
• 0 ≤ 〈ψ|Pψ〉 ≤ ||ψ||2 for all ψ ∈ X,149 and
• Q ≤ P iff 〈ψ|Qψ〉 ≤ 〈ψ|Pψ〉 for all ψ ∈ X.
In terms of expectation values in physics, this means

0 ≤ P̄ ≤ 1 and Q ≤ P ⇒ Q̄ ≤ P̄ .

Here, we exclude the trivial case X = {0}.
(iv) Eigenvalues: Let P ∈ P(A) with P �= 0. If

Pψ = λψ

with ||ψ|| = 1, then either λ = 1 or λ = 0. The eigenspace to the eigenvalue
λ = 1 (resp. λ = 0) is P (X) (resp. the orthogonal complement P (X)⊥). In
terms of mathematical logic, we regard the observable P as a question and the
eigenvalues λ = 1 (resp. λ = 0) correspond to the answers “yes” (resp. “no”).

(v) Orthogonality: Let P, Q ∈ P(A). We say that P is orthogonal to Q iff PQ = 0.
Geometrically, this means that P (X) is orthogonal to Q(X).

(vi) Partial isometry: The linear continuous operator U : X → X is called a partial
isometry iff we have

||Uψ|| = ||ψ|| for all ψ ∈ ker(U)⊥.

That is, if we use the orthogonal composition, X = Y ⊕ Y ⊥ with respect
to the subspace Y := ker(U), then U = 0 on Y , and U : Y ⊥ → im(U)
is an isometry. More precisely, it follows from the Fredholm alternative that
im(U) = ker(U∗)⊥, and hence the operator

U : ker(U)⊥ → ker(U∗)⊥

is a unitary operator.
(vii) The Murray–von Neumann equivalence relation: Let Q, P ∈ P(A). We write

Q ∼ P

iff there exists an operator U ∈ A with Q = UU∗ and P = U∗U. This is a
equivalence relation.
Geometrically, this means that U is a partial isometry whose restriction

U : P (X) → Q(X)

to the space P (X) is a unitary operator onto the space Q(X). Similarly, U∗ is a
partial isometry whose restriction U∗ : Q(X) → P (X) is a unitary operator.150

If Q, P ∈ P(A), then

||Q − P || < 1 implies Q ∼ P.

149 Note that 〈ψ|Pψ〉 = 〈ψ|P 2ψ〉 = 〈Pψ|Pψ〉 = ||Pψ||2 ≤ ||ψ||2.
150 To prove this, note that ||Pψ||2 = 〈ψ|Pψ〉 = 〈Uψ|Uψ〉 = ||Uψ||2. Thus, we

obtain ker(U) = P (X)⊥. Similarly, ker(U∗) = Q(X)⊥.
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(viii) The trivial center: The algebra A has a trivial center. This means that if
B ∈ A and AB = BA for all A ∈ A, then B is a multiple of the unit operator
(i.e., B = λI for some complex number λ). This is called the Schur lemma. 151

(ix) Invariant linear subspaces of X. The linear subspace Y of X is called invariant
under A iff A(Y ) ⊆ Y for all A ∈ A.

(x) The dimension function: Let P, Q ∈ P(A). Define d(P ) := dim P (X). Then:
• d(P ) = d(Q) iff P ∼ Q.
• If P (X) is orthogonal to Q(X), then d(P + Q) = d(P ) + d(Q).

In what follows, we will show that orthogonal projections play a crucial role con-
cerning

• the Gleason theorem and
• the Murray–von Neumann classification of factors of von Neumann algebras (see

page 657).

7.17.2 Gleason’s Extension Theorem – the Main Theorem of
Quantum Logic

Among other features, the Gleason theorem means that:
• Probabilities provide a tool for constructing the language of physics long

before they can be considered as empirically meaningful quantities.
• The expression for the probabilities first proposed by Max Born (in

1926) is an unavoidable part of an interpretation. If any probability
should ever play a part in the theory, it can be only this one.

• The density operator (introduced by von Neumann) is the basic notion
one must associate with a quantum state and not simply a pure state
represented by a wave function.152

Roland Omnès, 1994

Let X be a complex separable Hilbert space. Let P denote the set of all orthogonal
projections P : X → X. By definition, a pre-state of the C∗-algebra L(X, X) is a
function s : P → [0, 1] with the property that we have

s(P1 + . . . + Pn) = s(P1) + . . . + s(Pn)

for each finite family of orthogonal projections P1, . . . , Pn ∈ P with the additional
property that Pi(X) is orthogonal to Pj(X) if i �= j. Such a pre-state is also called
a finitely additive measure on P.

Theorem 7.63 If the dimension of the Hilbert space X is 3 or larger, then each
pre-state can be uniquely extended to a state of the C∗-algebra L(X, X).

Conversely, the restriction of any state on L(X, X) to the space of orthogonal
projections P is a pre-state.

From the philosophical point of view, roughly speaking, Gleason’s theorem tells us
the following: 153

151 Schur (1875–1941).
152 R. Omnès, The Interpretation of Quantum Mechanics, Princeton University

Press, Princeton, New Jersey, 1994. Reprinted by permission of Princeton Uni-
versity Press.

153 J. von Neumann and G. Birkhoff, The logic of quantum mechanics, Ann. Math.
37 (1936), 823–843.
A. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech.
6 (1957), 885–893.
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A quantum state is completely determined by only knowing the answers to
all of the possible yes/no questions.

The Gleason theorem was generalized to von Neumann algebras by Christensen
and Yeadon.154

7.17.3 The Finite Standard Model in Statistical Physics as a
Paradigm

The partition function knows all about the thermodynamic system. The
Feynman path integral can be viewed as a generalized partition function.

Folklore

The mean value. Let us consider a physical system S which can be in the finite
number of states

S1, ..., SM

with the probabilities p1, . . . , pM , respectively. Suppose that the physical quantity
A (e.g., energy) attains the value Am in the state Sm. By definition, if we measure
the physical quantity A of the system S, then we get the mean value

χ(A) :=

M
X

m=1

pmAm. (7.287)

We also write Ā instead of χ(A).

Fluctuations and correlations can be described by mean values.

In fact, the fluctuation ΔA ≥ 0 of the physical quantity A is defined by

(ΔA)2 = (A − Ā)2 =

M
X

m=1

pm(A − Ā)2.

Obviously, (ΔA)2 = A2−(Ā)2. For two physical quantities A and B, the correlation
coefficient is defined by

cor(A, B) :=
(A − Ā)(B − B̄)

ΔA · ΔB
=

PM
k=1 pm(A − Ā)(B − B̄)

ΔA · ΔB
.

The fundamental quantity

S := −k
M
X

k=1

pm ln pm

is called the entropy of the physical system S. If 0 < p1, . . . , pM < 1, then Ā is
called the mean value of the physical quantity A with respect to the mixed state
(S1, p1; . . . , SM , pM ). If pm0 = 1 and pm = 0 for all indices m �= m0, then Ā is called
the mean value of A with respect to the pure state Sm0 .

The language of C∗-algebras. The set {S1, . . . , SM} is called the state space
S. The set of functions

154 S. Maeda, Probability measures on projections in von Neumann algebras, Rev.
Math. Phys. 1 (1989), 235–290 (survey article).
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A : S → C

is denoted by A. We write Am := A(Sm), and A∗(Sm) := A(Sm)†. If A, B ∈ A and
α, β ∈ C, then

αA + βB, AB, A∗
are also contained in A. In addition, we introduce the norm

||A|| := sup
m=1,...,M

|A(Sm)|.

The set A is a commutative unital C∗-algebra which is called the extended algebra
of observables.

• Observables: The real-valued functions in A (i.e., A∗ = A) are called observables.
• States: Let 0 ≤ p1, . . . , pM ≤ 1 and p1 + . . . + pM = 1. Define the function

χ : A → C

by the key relation (7.287) above. Precisely all such functions are called states
of the C∗-algebra A. These functions have the following positivity property
χ(AA∗) =

PM
m=1 pmAmA†

m ≥ 0.
• Mean value: The value χ(A) is called the mean value of the observable A in the

state χ.

The grand canonical ensemble. Now let us consider special physical systems
whose states are characterized by energy and particle number. This is typical for
statistical physics. More precisely, assume that the physical system S can be in the
finite number of states S1, . . . , SM ; each state Sm is characterized by the energy
Em and the particle number Nm. We will motivate below that it is reasonable to
assume that the number

pm =
e(μNm−Em)/kT

PM
m=1 e(μNm−Em)/kT

, m = 1, . . . , M (7.288)

is the probability for finding the physical system in the state Sm. Here, the param-
eter T > 0 is called the (absolute) temperature, the real parameter μ is called the
chemical potential, and k is the Boltzmann constant. The mean energy Ē and the
energy fluctuation ΔE ≥ 0 are given by

Ē =
M
X

m=1

pmEm, (ΔE)2 =
M
X

m=1

pm(E − Ē)2.

Similarly, the mean particle number N̄ and the particle number fluctuation ΔN ≥ 0
are given by

N̄ =

M
X

m=1

pmNm, (ΔN)2 =

M
X

m=1

pm(N − N̄)2.

Physical interpretation. The grand canonical ensemble describes a (large)
many-particle system which is able to exchange energy and particles with its envi-
ronment. However, we assume that this exchange is so weak that one can attribute a
mean energy and a mean particle number to the system S. Moreover, this exchange
is governed by two macroscopic parameters, namely, the absolute temperature T
and the chemical potential μ. This tells us that the many-particle system does not
behave wildly, but regularly. Physicists say that the system is in thermodynamic
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equilibrium. For example, the sun radiates photons into the universe at the fixed
surface temperature of about 6000 K. The change of the particle number can be
caused by chemical reactions. This motivates the designation ‘chemical potential’
for μ.

The special case where μ = 0 corresponds to a fixed particle number (i.e., there
are no chemical reactions or no particle exchange with the environment). The grand
canonical ensemble with μ = 0 is called canonical ensemble.

The importance of the partition function. The main trick of statistical
physics is to introduce the function

Z(T, μ) :=

M
X

m=1

e(μNm−Em)/kT (7.289)

which is called the partition function of the grand canonical ensemble. The following
proposition tells us that

The knowledge of the partition function allows us to compute all of the
crucial thermodynamic quantities in statistical physics.

To this end, we introduce the so-called statistical potential

Ω(T, μ) := −kT ln Z(T, μ). (7.290)

This function is also called the Gibbs potential. An elementary computation shows
that the following relations hold for the partial derivatives of the statistical poten-
tial.

(i) Entropy: S = −ΩT .
(ii) Mean particle number: N̄ = −Ωμ.
(iii) Particle number fluctuation: (ΔN)2 = kTN̄μ.
(iv) Free energy: By definition, F := Ω + μN̄.
(v) Mean energy: Ē = F + TS.155

(vi) Energy fluctuation: If the particle number is fixed (i.e., μ = 0), then we obtain
(ΔE)2 = kT 2ĒT .

(vii) Pressure: Suppose that the energies E1, . . . , EM and the particle numbers
N1, . . . , NM depend on the volume V of the physical system. Then the statis-
tical potential Ω(T, μ, V ) also depends on the volume V , and the pressure of
the physical system is defined by P := −ΩV .

The reader should observe that the Feynman functional integral

Z =

Z

eiS[ψ]/�Dψ

can be regarded as a (formal) continuous variant of the partition function.

7.17.4 Information, Entropy, and the Measure of Disorder

Many-particle systems in nature are able to store information. This is
equivalent to both the measure of disorder and the notion of entropy in
physics. Folklore

155 The mean energy is also called the inner energy.
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Information and words. In order to get some information in daily life, it is useful
to ask L questions which have to be answered by ‘yes’ or ‘no’. Then the typical
answer looks like

Y N . . . NN. (7.291)

This is a word of length L with the two letters Y (yes) and N (no). Intuitively,
the minimal number L of questions measures information. For example, suppose
we have n balls of different weight. We want to know the heaviest ball. Using a
balance, if n = 2, then we need one experiment (question). If n = 3, then we need
two experiments. Generally, it follows by induction that we need n− 1 experiments
for n balls in order to find out the heaviest ball. After knowing this, we gain the
information I = n − 1.

Observe that in computers, we use words of the type (7.291) in order to trans-
port information. It is our goal to generalize this simple approach to more general
situations. Interestingly enough, it turns out that one has to use the methods of
probability theory.

General definition of information. Let M = 1, 2, . . . . Consider a random
experiment which has the possible M outcomes

O1, O2, . . . , OM (7.292)

where Om appears with the probability pm. Here, 0 ≤ p1, p2, . . . , pM ≤ 1 and
p1 + p2 + . . . + pM = 1. The nonnegative number

I := −
M
X

m=1

pm log2 pm (7.293)

is called the information of the random experiment (7.292).156 The unit of I is
called bit. Moreover, 1 byte = 8 bits. Intuitively, we gain the information I after
performing the random experiment and after knowing the outcome. For example,
let us throw a coin L times. The outcome corresponds to a word of the form (7.291),
where Y and N stand for head and tail, respectively. The number of words of type
(7.291) is equal to 2L. Thus, the probability for a single outcome of the random
coin experiment is equal to

pm =
1

2L
, m = 1, . . . , 2L.

After performing the coin experiment, we gain the information

I = −
2L
X

m=1

pm log2 pm = log2 2L = L.

This coincides with the intuitive information introduced above in terms of answering
yes/no questions. The number 2L is called the statistical weight of the event (7.291).

Suppose that we have p1 = 1 and p2 = . . . = pM = 0. Then we know the
outcome O1 of our random experiment in advance. This means that we do not

156 By convention, if pm := 0 for some index m, then we set pm log2 pm = 0.
Information theory was created by Claude Shannon (1916–2001) in his paper:
A mathematical theory of communication, Bell System Techn. J. 27 (1948),
379–423; 623–656.
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gain any information after knowing the outcome. In fact, by (7.293) we get I =
− log2 1 = 0.

The genetic code. The DNA (desoxyribonucleic acid) encodes the genetic
information. This is a double-stranded molecule held together by weak bounds
between base pairs of nucleotides. The four nucleotides in DNA contain the bases:
adenine (A), cytosine (C), guanine (G), and thymine (T). A single strand can be
formally described by a word

AGCT . . . G (7.294)

of length L with the four letters A, C, G, T. There are 4L such words. Introducing
the weight pm := 1/4L, the word (7.294) contains the information

I = −
4L
X

m=1

pm log2 pm = log2 4L = 2L.

In nature, base pairs are only formed between A and T and between C and G.
Thus, the base sequence (7.294) of each single strand can be deduced from that
of its partner. The crucial protein synthesis in a biological cell is encoded into the
messenger RNA (ribonucleic acid). This can be formally described by a word

Cm1Cm2 . . . CmL (7.295)

of length L with the twenty letters C1, C2, . . . , C20. These letters are called codons.
Each codon is a word of length 3 with the letters A, C, G, T. Consequently, there
are 43 = 64 codons. However, by redundance, only 20 codons are essential. This
corresponds to the multiplicity of spectral lines in the spectroscopy of molecules.
This analogy combined with supersymmetry can be used in order to model math-
ematically the redundance of codons.157 The information encoded into the word
(7.295) is equal to I = log2 20L = L log2 20.

The properties of the information function. Let

σM := {(p1, . . . , pM ) : 0 ≤ p1 + . . . + pM ≤ 1, p1 + . . . + pM = 1}

be an (M − 1)-dimensional simplex in R
M . This is the closed convex hull of the M

extremal points (vertices) (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). The proof of the following
statement will be given in Problem 7.37.

Proposition 7.64 The function I : σM → R given by (7.293) is continuous and
concave.158 The minimal value I = 0 is attained at the extremal points of σM .
Furthermore, the maximal value I = log2 M is attained at the point pk = 1

M
for all

k = 1, . . . , M.

Measure of disorder. Consider the following experiment. We are given N
particles, and we want to distribute them into M boxes B1, . . . ,BM . Each possible
distribution can be described by the symbol

157 See M. Forger and S. Sachse, Lie super-algebras and the multiplet structure of
the genetic code, I. Codon representations, II. Branching rules, J. Math. Phys.
41 (2000), 5407–5422; 5423–5444.
F. Antonelli, L. Braggion, M. Forger, et al., Extending the search for symmetries
in the genetic code, Intern. J. Modern Physics B 17 (2003), 3135–3204.

158 Explicitly, I(λq + (1−λ)p) ≥ λI(q)+ (1−λ)I(p) for all q, p ∈ σM and λ ∈ [0, 1].
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N1N2 . . . NM (7.296)

where Nm is the number of particles in the box Bm. Then N1 + . . . + NM = N. Set
pm := Nm

N
. By definition, the number

I := −
M
X

m=1

pm log2 pm

is called the measure of disorder of the distribution (7.296). In order to show that
this definition is reasonable, consider the following special cases.

• By Prop. 7.64, 0 ≤ I ≤ log2 M.
• If all of the particles are in the same box, say, B1, then we have p1 = 1 and

p2 = . . . = pM = 0 Hence I = −p1 log2 p1 = 0. This corresponds to minimal
disorder.

• If each box contains the same number of particles, then Nm = N
M

. Hence pm = 1
M

for m = 1, . . . , M . Therefore, I = log2 M. This corresponds to maximal disorder.

Entropy. For historical reasons, physicists replace the information I from
(7.293) by the quantity

S = −k
M
X

m=1

pm ln pm.

Here, we use the Boltzmann constant k = 1.380 · 10−23 J/K. This implies that
the entropy S has the physical dimension (heat) energy per temperature (see Sect.
7.17.11 on page 654). Since ln pm = ln 2 · log2 pm, the relation between entropy and
information is given by

S = I · k ln 2.

Intuitively, the entropy S measures the disorder of a many-particle system in
physics. We have 0 ≤ S ≤ k ln M. Recent astronomical observations show that
our universe is expanding in an accelerated manner. This means that stars and
black holes decay after a long time.159 Hence the disorder of the universe increases,
that is, the entropy increases. This was postulated by Clausius (1822–1888) in 1865.
He called this the heat death of the universe.

Temperature and chemical potential as Lagrange multipliers. In order
to motivate the grand canonical ensemble, let us study the following maximum
problem:

S = −k

M
X

m=1

pm ln pm = max!, p ∈ C (7.297)

with the unit cube C := {(p1, . . . , pM} : 0 ≤ p1, . . . , pM ≤ 1} and the constraints

Ē =

M
X

m=1

pmEm, N̄ =

M
X

m=1

pmNm, p1 + . . . + pM = 1. (7.298)

Let M ≥ 2. We are given the positive numbers E1, . . . EM , N1, . . . , NM and Ē, N̄ .
We are looking for a solution (p1, . . . , pM ).

159 F. Adams and G. Laughlin, A dying universe: the long-term fate and evolution
of astrophysical objects, Rev. Mod. Phys. 69 (1997), 337–372.
F. Adams and G. Laughlin, The Five Ages of the Universe: Inside the Physics
of Eternity, Simon and Schuster, New York, 1999.
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Theorem 7.65 Consider (p1, . . . , pM ) given by (7.288) on page 639. Suppose that
the real parameter μ and the positive parameter T are fixed in such a way that the
constraints (7.298) are satisfied. In addition, assume that 0 < p1, . . . , pM < 1 and
that the matrix

0

B

@

E1 . . . EM

N1 . . . NM

1 . . . 1

1

C

A

has rank three. Then (p1, . . . , pM ) is the unique solution of the maximum problem
(7.297), (7.298).

Proof. (I) Local existence. We will use the sufficient solvability condition for the
Lagrangian multiplier rule (see Prop. 43.23 of Zeidler (1986), Vol. III (see the ref-
erences on page 1049). To this end, set

L := S + α

 

Ē −
X

m

pmEm

!

+ β

 

N̄ −
X

m

pmNm

!

+ γ

 

1 −
X

m

pm

!

.

That is, we add the constraints (7.298) to the function S which has to be maximized.
The real numbers α, β, γ (called Lagrange multipliers) will be chosen below. For the
partial derivatives, we get

Lpm = −k ln pm − k − αEm − βNm − γ,

and

Lpjpm = −kδjm

pm
.

By (7.288), we choose μ, T and (p1, . . . , pM ) in such a way that the constraints
(7.298) are satisfied. Moreover, we set

α :=
1

T
, β := − μ

T
, γ := −k + k ln

X

m

e(μNm−Em)/kT .

Then Lpm = 0 for all m, and the matrix (−Lpjpm) is positive definite. This guar-
antees that our choice (p1, . . . , pM ) represents a local maximum of the entropy
function S under the constraints (7.298).

(II) Global existence. Since the entropy function S is concave, each local max-
imum of S on a convex set is always a global maximum. (We refer to Prop. 42.3
of Zeidler (1986), Vol. III (see the references on page 1049), and note that −S is
convex.)

(III) Uniqueness. On the boundary of the cube C, the entropy function S van-
ishes. Therefore, any solution of (7.297), (7.298) lies in the interior of C. Since the
matrix (−Spjpm) is positive definite, the function S is strictly concave on the inte-
rior of C. This implies the uniqueness of the solution (see Theorem 38.C. of Zeidler
(1986), Vol. III). �

In the special case where the particle numbers are fixed, we use the choice
N1 = . . . = NM = N̄ , and μ = 0. Then we have merely to assume that the matrix

 

E1 . . . EM

1 . . . 1

!

has rank two, that is, there exist at least two different energies.
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7.17.5 Semiclassical Statistical Physics

In semiclassical statistical physics, the extended algebra of observables is a
commutative ∗-algebra of functions, and the states are generated by some
probability measure.

Folklore

The key relation reads as

Ā :=

Z

M

A(q, p)�(q, p)
dqdp

h
.

Here, we use the product set M := B × R, where B is a closed interval on the real
line. We are given the bounded continuous function A : M → C and the bounded
continuous function � : M → [0,∞[ with the normalization condition

Z

M

�(q, p)
dqdp

h
= 1.

Then the function � represents a probability density on the phase space M , and Ā
is the mean value of the function A = A(q, p). Traditionally, this function is called
a (physical) observable iff it is real-valued.160 The square of the mean fluctuation
is given by

(ΔA)2 =

Z

M

(A(q, p) − Ā)2�(q, p)
dqdp

h
.

In terms of physics, we consider an ideal gas161 on the interval B, that is, the position
coordinate q of a single gas particle lives on the interval B, and the momentum
coordinate p lives on the real line R. If H = H(q, p) is the Hamiltonian function of
a single gas particle, then we choose the function

�(q, p) :=
e−H(q,p)/kT

R

M
e−H(q,p)/kT dqdp

h

.

This function generates the semiclassical Gibbs statistics.162 Here, T is the absolute
temperature, k is the Boltzmann constant, and h is Planck’s quantum of action.
For example, if the gas particles behave like harmonic oscillators, then we choose

H(q, p) = p2

2m
+ mω2q2

2
. We need the physical constants k and h in order to guarantee

that both the quantities H(q,p)
kT

and dqdp
h

are dimensionless. This implies that the

function e−H(q,p)/kT makes sense, the probability density � is dimensionless, and
the mean value Ā has the same dimension as the physical observable A(q, p). For
example, if we choose A(q, p) := H(q, p), then NH̄ is the mean energy of the ideal
gas at the temperature T , where N is the number of gas particles. The function

S(q, p) = −k�(q, p) ln �(q, p)

160 Note that the algebra of observables to be introduced below is not only based on
real-valued functions, but on complex-valued functions in order to get a complex
∗-algebra.

161 An ideal gas is characterized by the property that there are no interactions
between the gas particles, that is, the single gas particles behave like independent
random objects.

162 Gibbs (1839–1903).
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corresponds to the entropy, and NS̄ is the entropy of the ideal gas at the temper-
ature T . If C is a compact subset of the phase space M , then the integral

Z

C

�(q, p)
dqdp

h

is the probability for finding the position-momentum coordinate (q, p) of a single
gas particle in the set C. Let us translate this into the language of ∗-algebras.

The extended ∗-algebra A of observables. Let A denote the set of all
bounded continuous functions A : M → C. With respect to the star operation
A∗(q, p) := A(q, p)† for all (q, p) ∈ M , the set A is a commutative ∗-algebra with
unit element 1.163 The ∗-algebra A is called the extended ∗-algebra of observables
(of the gas). Precisely the real-valued functions A in A are called observables. In
addition, equipped with the norm

||A|| := sup
(q,p)∈M

|A(q, p)|,

the ∗-algebra A becomes a normed space with

• ||A∗|| = ||A|| and ||A∗A|| = ||A||2 for all A ∈ A;
• ||1|| = 1.

Since the phase space M is an unbounded closed subset of R
2 (i.e., M is not

compact), the normed space A is not a Banach space. We call A an incomplete
C∗-algebra (or a pre-C∗-algebra).

States. Generally, states are functionals χ which assign a real number χ(A) to
each observable A. We define

χ(A) :=

Z

M

A(q, p)�(q, p)
dqdp

h
for all A ∈ A.

Then, for all A ∈ A, we have:

• χ(A∗A) =
R

M
A(q, p)†A(q, p)�(q, p) dqdp

h
≥ 0;

• χ(I) =
R

M
1 · �(q, p) dqdp

h
= 1.

• The map χ : A → C is linear.
• |χ(A)| ≤ sup(q,p)∈R2 |A(q, p)| = ||A||.
We call χ a state on the ∗-algebra A. This state corresponds to the probability
measure ν generated by the probability density � (i.e., dν = � dqdp

h
).

Dynamics. To avoid technicalities, choose J := R, that is, M = R
2. Motivated

by the classical equation of motion

q̇(t) = Hp(q(t), p(t)), ṗ(t) = −Hq(q(t), p(t)), t ∈ R (7.299)

with the initial condition q(0) = q0, p(0) = p0, we define

(UtA)(q0, p0) := A(q(t), p(t))

for all times t ∈ R and all initial points (q0, p0) ∈ R
2. We assume that, as for the

harmonic oscillator, the trajectories q = q(t), p = p(t) exist for all times. Then, for
each time t ∈ R, the map

Ut : A → A
163 Here, 1 is given by the function A(q, p) ≡ 1.
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is a ∗-automorphism. Thus, {Ut}t∈R is a one-parameter group of ∗-automorphisms
of the ∗-algebra A.

Our next goal is to prove that the dynamics of the gas corresponds to a family
{Ut}t∈R of unitary operators Ut on the Hilbert space L2(R

2). To this end, let
Apre denote the set of all smooth functions A : R

2 → C with compact support.
Obviously, Apre is a ∗-subalgebra of the ∗-algebra A of observables. In addition,
Apre is a dense subset of the Hilbert space L2(R

2) equipped with the inner product
〈A|B〉 :=

R

R2 A(q, p)†B(q, p)dqdp.

Proposition 7.66 Let A, B ∈ Apre. Then 〈UtA|UtB〉 = 〈A|B〉 for all t ∈ R.

This tells us that the dynamics of the gas respects the inner product on the
Hilbert space L2(R

2). Using this result and the extension theorem from Problem
7.21, we get the following.

Corollary 7.67 For any time t ∈ R, the operator Ut : Apre → A can be uniquely
extended to a unitary operator Ut : L2(R) → L2(R).

It remains to prove Prop. 7.66. Using the equation (7.299) of motion, we get

d

dt
(UtA)(q0, p0) = Aq(q(t), p(t))Hp(q(t), p(t)) − Ap(q(t), p(t))Hq(q(t), p(t)).

Noting that Hqp = Hpq, integration by parts yields
Z

R2
(A†

qHp − A†
pHq)Bdqdp = −

Z

R2
A†(BqHp − BpHq)dqdp.

This implies d
dt
〈UtA|UtB〉 = 〈 d

dt
UtA|UtB〉 + 〈UtA| d

dt
UtB〉 = 0. �

Generalization. The simple special case considered above can be generalized
to 2s-dimensional phase space manifolds M by starting from the key formula

Ā :=

Z

M

A(q, p)dν(q, p)

with
R

M
dν = 1. Here, (q, p) = (q1, . . . , qs; p1, . . . , ps). As a rule, the Hamiltonian

H = H(q, p) describes interactions between the particles; this corresponds to so-
called real gases.

For example, consider a gas consisting of N molecules in a box B of finite volume
V in the 3-dimensional space. Then s = 3N , and M = BN × R

3N . Moreover,

dν := �(q, p)
dq3Ndp3N

h3NN !
with �(q, p) :=

e−H(q,p)/kT

R

M
e−H(q,p)/kT dq3N dp3N

h3N N !

.

We assume that the function � is invariant under permutations of the particles. The
factorial N ! takes the Pauli principle into account (principle of indistinguishable
particles). If we introduce the partition function

Z(T, V ) :=

Z

M

e−H(q,p)/kT dq3Ndp3N

h3NN !
,

then we obtain the following thermodynamic quantities:

• Free energy: F (T, V ) := −kT ln Z(T, V ).
• Entropy: S(T, V ) = −FT (T, V ).
• Pressure: P (T, V ) = −FV (T, V ).
• Mean energy: Ē(T, V ) = F (T, V ) + TS(T, V ).



648 7. Quantization of the Harmonic Oscillator

7.17.6 The Classical Ideal Gas

Let us consider an ideal gas which consists of N freely moving molecules of mass
m. The fixed particle number N is assumed to be large (of magnitude 1023). We
assume that the molecules move in a 3-dimensional box B of volume V . Then the
following hold:

(i) Free energy: F = −NkT (1 + ln V (2πmkT )3/2

Nh3 ).

(ii) Entropy: S = Nk
“

5
2

+ ln V (2πmkT )3/2

Nh3

”

.

(iii) Energy: E = 3
2
NkT.

(iv) Energy fluctuation: ΔE
E

=
q

2
3N

.

(v) Pressure: P = NkT/V.
(vi) Maxwell’s velocity distribution: Fix the origin O and consider the velocity

vector v = OP. The probability of finding the endpoint P of the velocity
vector v of a single molecule in the open subset C of R

3 is given by the Gaussian
integral

“ m

2πkT

”3/2
Z

C

e−mv2/2kT d3v. (7.300)

Here, mv2/2 is the kinetic energy of the freely moving molecule, and the nor-
malization factor guarantees that the probability is equal to one if C = R

3.

The experience of physicists shows that these formulas are valid if the temperature
T is sufficiently high.164 Let us compute (i) through (vi). We start with the energy

function H =
PN

j=1

p2
j

2m
. The partition function reads as

Z =

Z

BN×R3N

e−H(P)/kT d3Nq d3Np

h3NN !
=

V N

h3NN !

„

Z

R

e−p2/2mkT dp

«3N

=
V N (2πmkT )3N/2

h3NN !
∼
„

eV (2πmkT )3/2

Nh3

«N

.

Here, to simplify computations, we use the approximation165 1
N !

∼
`

e
N

´N
. Parallel

to (i)–(vii) on page 640 with μ = 0, we get the following formulas

F = −kT ln Z, S = −FT , E = F + TS, P = −FV

and (ΔE)2 = kT 2ET . By straightforward computations, we obtain the desired
formulas (i) through (v). To get (vi), we start with the Gibbs distribution

164 More precisely, we asssume that V (2πmkT )3/2

Nh3 is small. This means that the de

Broglie wave length λ := h/(2πmkT )1/2 is small compared with the mean dis-

tance (V/N)1/3 of the molecules.
165 This can be motivated by the Stirling formula

1

N !
=
“ e

N

”N

· 1

eϑ(N)/12N
√

2πN
, N = 1, 2, . . .

where 0 < ϑ(N) < 1. Hence 1
N !

= eN(1+o(N))

NN as N → ∞.
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�(p1, . . . ,pn) =
e−

Pn
j=1 p2

j /2mkT

R

BN×R3N e−
PN

j=1 p2
j /2mkT d3N q d3N p

h3N N !

=

N
Y

j=1

ν(pj)

where

ν(p) :=
e−p2/2mkT

V
R

R3 e−p2/2mkT d3p

h3(N !)1/N

=
h3(N !)1/Ne−p2/2mkT

V (2πkT )3/2
.

We assume that the single molecules move independently. Thus, it is reasonable
to regard the function ν as the distribution function for a single molecule. For the
mean momentum of a single molecule, we obtain

p̄ =

Z

B×R3
ν(p)p

d3q d3p

h3(N !)1/N
.

Using p = mv, we get the mean velocity v̄ =
R

R3 ve−mv2/2kT
`

m
2πkT

´3/2
d3v which

motivates (vi).

7.17.7 Bose–Einstein Statistics

Let us consider the following situation which frequently arises in quantum statis-
tics. Suppose that the system Γ (e.g., a gas of photons) consists of particles that
may assume one of the energy values ε0, . . . , εM . By definition, a state of Γ is
characterized by

ε0, ε1, . . . , εJ ; n0, n1, . . . , nJ . (7.301)

This means that precisely nj particles of Γ have the energy εj , where the index j
runs from 0 to J . For each such state, the particle number N and the energy E are
given by

N =

J
X

j=0

nj , E =

J
X

j=0

njεj .

Therefore, the partition function is given by

Z(T, μ) :=
X

Γ

e(μN−E)/kT =

J
Y

j=0

X

nj

e(μnj−njεj)/kT .

Furthermore, we introduce the statistical potential

Ω(T, μ) := −kT ln Z(T, μ) = −kT

J
X

j=0

ln
X

nj

“

e(μ−εj)/kT
”nj

. (7.302)

We now make the crucial assumption that

Each occupation number nj may assume the values 0, 1, . . . , n.

This corresponds to bosons (that is, particles with integer spin, e.g., photons). Using
the geometric series, Ω(T, μ) is equal to

−kT

J
X

j=0

ln

n
X

nj=0

“

e(μ−εj)/kT
”nj

= −kT

J
X

j=0

ln
1 − e(n+1)(μ−εj)/kT

1 − e(μ−εj)/kT
.
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Furthermore, assume that the maximal occupation number n is very large and
μ − εj < 0 for all j. Letting n → ∞, we get the final statistical potential

Ω(T, μ) = kT
J
X

j=0

ln
“

1 − e(μ−εj)/kT
”

.

By (7.290) on page 640, N = −Ωμ, S = −ΩT , F = Ω + μN , and E = F + TS. This
yields the following.

(i) Mean particle number: N =
PJ

j=0 Nj where Nj := e
(μ−εj)/kT

1−e
(μ−εj)/kT .

(ii) Mean energy: E =
PJ

j=0 Njεj .

(iii) Free energy: F = Ω + μN.
(iv) Entropy: S = E−F

T
.

In particular, if each particle behaves like a quantum harmonic oscillator of angular
frequency ω, then εj = �ω(j + 1

2
). We have shown in Sect. 2.3.2 of Vol. I that

Planck’s radiation law is a consequence of the mean energy formula (ii) for the
quantum harmonic oscillator.

The Maxwell–Boltzmann statistics as a limit case for high tempera-
ture. In the special case where e(μ−εj)/kT � 1 (e.g., μ− εj < 0 and T is large), we
approximately obtain

Nj = e(μ−εj)/kT . (7.303)

This is called the classical Maxwell–Boltzmann statistics. which generalizes the
Maxwell velocity distribution (7.300) on page 648.

Bose–Einstein condensation as a limit case at low temperature. Sup-
pose that 0 ≤ ε0 < ε1 < ε2 < . . . . We expect that at low temperatures most of the
bosons are located in the ground state. In fact, by (i), for the particle numbers we
get

lim
T→+0

lim
μ→ε0−0

Nj(T, μ) =

(

+∞ if j = 0,

0 if j = 1, 2, . . .

This phenomenon is called Bose–Einstein condensation.

7.17.8 Fermi–Dirac Statistics

In contrast to the preceding section, we now assume that

Each occupation number nj may only assume the values 0, 1.

This corresponds to the Pauli exclusion principle for fermions (that is, particles
with half-integer spin, e.g., electrons).166 This yields

Ω(T, μ) = −kT

J
X

j=0

ln(1 + e(μ−εj)/kT ).

As in Sect. 7.17.7, we now obtain the following:s

166 More precisely, if s is the spin of the particles, then each energy value εj has to
be counted with the multiplicity 2s + 1.
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(i) Mean particle number: N =
PJ

j=0 Nj where Nj := e
(μ−εj)/kT

1+e
(μ−εj)/kT .

(ii) Mean energy: E =
PJ

j=0 Njεj .

(iii) Free energy: F = Ω + μN.
(iv) Entropy: S = E−F

T
.

If e(μ−εj)/kT � 1 (e.g., μ − εj < 0 and T is large), then we obtain the classical
Maxwell–Boltzmann statistics (7.303).

The Fermi ball as a limit case at low temperature. For the particle
numbers, we get

lim
T→+0

Nj(T, μ) =

(

1 if εj < μ,

0 if μ < εj .

This means that at low temperature each of the lowest energy levels is occupied
by precisely one particle. In contrast to Bose–Einstein condensation, by the Pauli
principle it is impossible that all of the particles are in the ground state. For ex-
ample, consider a gas of N electrons in a box of volume V in the limit case of
temperature T = 0. Since the electron has spin s = 1

2
, each cell of volume h3 in

the phase space contains two electrons with different spin orientations. Thus, if P
denotes the maximal momentum of the electrons at T = 0, then the phase space
volume 4

3
πP 3 · V contains N particles where

N =
2

h3
· 4

3
πP 3V.

The ball of radius P is called the Fermi ball of the N -particle electron gas at zero
temperature, and the surface of the Fermi ball is called the Fermi surface.

Applications of the Bose–Einstein statistics and the Fermi–Dirac statistics to
interesting physical phenomena can be found in Zeidler (1986), Vol. IV, Chap. 68
(see the references on page 1049). For example, this concerns Planck’s radiation
law for photon gases, as well as the Fermi ball which is crucial for computing
the critical Chandrasekhar mass of special stars called white dwarfs (see also N.
Straumann, General Relativity with Applications to Astrophysics, Springer, New
York, 2004). Using the methods of quantum field theory, the structure of Fermi
surfaces for electrons in a crystal is studied in M. Salmhofer, Renormalization: An
Introduction, Springer, Berlin, 1999.

7.17.9 Thermodynamic Equilibrium and KMS-States

The grand canonical example in finite quantum statistics. Let X be a
finite-dimensional complex Hilbert space, X �= {0}. Choose the density operator

�0 :=
eβ(μN−H)

tr eβ(μN−H)
.

Here, H, N : X → X are self-adjoint operators, and β > 0 and μ are real parame-
ters, with the temperature T , the Boltzmann constant k, the chemical potential μ,
and β = 1/kT. In the language of C∗-algebras, the following hold.

• The extended C∗-algebra A = L(X, X) of observables consists of all linear oper-

ators A : X → X equipped with the norm ||A|| :=
p

tr(A∗A).
• The states are defined by χ0(A) := tr(�0A) for all A ∈ A.
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• The dynamics of the state χ0 is given by

χt(A) := tr(�0UtA)

for all A ∈ A and all times t ∈ R. Here, Ut(A) := eitH/�Ae−itH/� .

Proposition 7.68 The state χ0 corresponding to the density operator �0 and the
dynamics {χt}t∈R is a KMS-state of temperature T .

Proof. Set Z := tr(eβ(μN−H)). To simplify notation, choose μ := 0 and � := 1.
Then

χ0(A) = tr(�0A) = Z−1 tr(e−βHA).

Noting the commutativity property of the trace, tr(CD) = tr(DC), we get

Zχ0(Ut−iβ(B)A) = tr(e−βHei(t−iβ)HBe−i(t−iβ)HA) = tr(eitHBe−itHe−βHA)

= tr(e−βHAeitHBe−itH) = Zχ0(AUt(B)).

�

Example. As a typical example, choose the operators H and N in such a way
that

Hψj = Ejψj , Nψj = Njψj , j = 1, . . . , n

where ψ1, . . . , ψn is an orthonormal basis of X, and Ej , Nj are nonnegative numbers
for all j. Then �0ψj = pjψj with

pj =
eβ(μNj−Ej)

Pn
j=1 eβ(μNj−Ej)

.

The operator H (resp. N) is called the Hamiltonian with the energy levels
E1, . . . , En (resp. the particle operator with the particle numbers N1, . . . , Nn.)

7.17.10 Quasi-Stationary Thermodynamic Processes and
Irreversibility

In the huge factory of natural processes, the principle of entropy occu-
pies the position of manager, for it dictates the manner and method of
the whole business, whilst the principle of energy merely does the book-
keeping, balancing debits and credits. . .
Life on the earth needs the radiation of the sun. Our conditions of existence
require a determinate degree of temperature, and for the maintenance of
this there is needed not addition of energy, but addition of entropy.167

Robert Emden, 1938

Let us study the sufficiently regular time-evolution of the grand canonical ensem-
ble. By a quasi-stationary process of the grand canonical ensemble, we understand
smooth time-depending functions of temperature, chemical potential, and volume:

T = T (t), μ = μ(T ), V = V (t), t0 ≤ t ≤ t1. (7.304)

By (7.290) on page 640, this yields the following quantities:

E = E(t), N = N(t), S = S(t), P = P (t), t0 ≤ t ≤ t1.

167 R. Emden, Why do we have winter heating? Nature 14 (1938), 908–909.
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Here, E is the mean energy, N is the mean particle number, S is the entropy, and
P is the pressure.168 From the physical point of view, this is an idealization. We
assume that the physical system is in thermodynamic equilibrium at each time t. In
reality, a certain relaxation time is needed in order to pass from a thermodynamic
equilibrium state to a new one. Let Q(t) be the heat added to the physical system
during the time interval [t0, t]. We postulate that, for all times t in the interval
[t0, t1], the process (7.304) has the following properties.

(i) The first law of thermodynamics: Ė(t) = Q̇(t) − P (t)V̇ (t) + μ(t)Ṅ(t).

(ii) The second law of thermodynamics: T (t)Ṡ(t) ≥ Q̇(t).

(iii) The third law of thermodynamics. Suppose that the temperature T (t) goes
to zero as t → t1 − 0. Then so do the entropy S(t) and its partial derivatives
ST (t), Sμ(t), SV (t).

The first law describes conservation of energy. To discuss the second law, let us
introduce the external entropy

Se(t) := S(t0) +

Z t

t0

Q̇(τ)

T (τ)
dτ, t0 ≤ t ≤ t1,

which depends on the heat added to the system. In addition, we introduce the
remaining internal entropy Si(t) := S(t) − Se(t). Then

Ṡe(t) =
Q̇(t)

T (t)
, Ṡi(t) ≥ 0, t0 ≤ t ≤ t1.

Assume that t0 = −t1 where t1 > 0. If the quasi-stationary process (7.304) has the
property that also the time-reflected process

T = T (−t), μ = μ(−T ), V = V (−t), t0 ≤ t ≤ t1

is quasi-stationary, then the process is called reversible. In this case, because of
d
dt

S(−t) = −( d
dt

S)(−t), the second law tells us that

−T (−t)Ṡ(−t) ≥ Q̇(−t), −t1 ≤ t ≤ t1.

This implies

T (t)Ṡ(t) ≥ Q̇(t), −T (t)Ṡ(t) ≥ Q̇(t), −t1 ≤ t ≤ t1.

Hence T (t)Ṡ(t) = Q̇(t) for all t ∈ [−t1, t1]. This means that the internal entropy
Si vanishes on the time interval [−t1, t1]. Processes are called irreversible iff they
are not reversible. Typically, the time-evolution of living beings is irreversible. A
more detailed discussion can be found in Zeidler (1986), Vol. IV, Chap. 67 (see the
references on page 1049).

The thermodynamic limit and phase transitions. If the volume V of
the physical system goes to infinity, V → ∞, then this limit is called the thermo-
dynamic limit by physicists. Then it may happen that important thermodynamic
quantities become singular for appropriate parameters (e.g., temperature T ). These
singularities correspond to phase transitions (e.g., the transition from water to ice).
Phase transitions play a fundamental role for understanding critical phenomena in
nature (e.g., the inflation of the very early universe and the emergence of the three
fundamental forces during the cooling process of the hot universe after the Big

168 To simplify notation, we write E and N instead of Ē and N̄ , respectively.
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Bang).169 In terms of statistical physics, phase transitions correspond to a strong
increase of fluctuations. We will encounter this in later volumes. As an introduc-
tion to the rigorous theory of phase transitions, we recommend the classical survey
article by Griffith.170

7.17.11 The Photon Mill on Earth

Living objects store a lot of information related to the genetic code. There arises the
following question in physics: where does this information come from? The solution
of this interesting problem is given by the entropy relation

ΔSe =
ΔQ

Tin
− ΔQ

Tout
,

which is called the photon mill on earth. In fact, the sun sends photons to the earth
at the temperature Tin = 5800 K, which is the high surface temperature of the sun.
Most of these photons are reflected by the surface of earth, and they are sent to
the universe at the lower temperature Tout = 260 K. Since Tin > Tout, the earth
radiates the amount of entropy ΔSe into the universe. More precisely, during one
second, the surface of earth gets the heat energy ΔQ = 1017 J from the sun. Hence
the entropy loss of earth during one second is equal to

ΔSe = −4 · 1014 J/K.

This means that one square meter of the surface of earth radiates the entropy of
about 1 J/K during one second into the universe. The radiated entropy decreases
the disorder on earth, that is, the earth gains order. This is mainly the informa-
tion stored in living objects. Physicists describe this by saying that energy at a
higher temperature has a higher quality than the same amount of energy at a lower
temperature.

7.18 Von Neumann Algebras

In order to deeply understand the mathematical structure of quantum
mechanics, John von Neumann studied a special class of operator algebras.
Nowadays these algebras are called von Neumann algebras.171

Each von Neumann algebra is a C∗-algebra. But the converse is seldom
true.

Folklore

169 See G. Börner, The Early Universe: Facts and Fiction, Springer, Berlin, 2003.
Ø. Grøn and S. Hervik, Einstein’s Theory of General Relativity: with Modern
Applications in Cosmology, Springer, New York, 2007.
S. Weinberg, Cosmology, Oxford University Press, 2008.

170 R. Griffith, Rigorous results and theorems. In: C. Domb and M. Green (Eds.),
Phase transitions and critical phenomena, Academic Press, New York, 1970, pp.
9–108.

171 F. Murray and J. von Neumann, On rings of operators, Ann. Math. 37 (1936),
116–229.
J. von Neumann, On rings of operators: reduction theory, Ann. Math. 50 (1949),
401–485.
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The theory of von Neumann algebras has been growing in leaps and bounds
in the last 20 years. It has always had strong connections with ergodic the-
ory and mathematical physics. It is now beginning to make contact with
other areas such as differential geometry and K-theory. . . The book com-
mences with the Murray–von Neumann classification of factors, proceeds
through the basic modular theory (the Tomita–Takesaki theory) to the
Connes classification of von Neumann algebras of type IIIλ, and con-
cludes with a discussion of crossed-products, Krieger’s ratio set, examples
of factors, and Takesaki’s duality theorem.172

Viakalathur Sunder, 1987

In what follows, X is a complex separable non-trivial Hilbert space (i.e., X �= {0}).

7.18.1 Von Neumann’s Bicommutant Theorem

Commutant. Commutation relations play a crucial role in quantum mechanics. In
particular, if two observables commute, then it is possible that they have common
eigenvectors, that is, they can be sharply measured at the same time. This motivated
John von Neumann to investigate commutants of algebras. Consider the C∗-algebra
L(X, X) of the linear continuous operators

A : X → X.

Let S be a subset of L(X, X). By definition, the operator A ∈ L(X, X) belongs to
the commutant S ′ of the set S iff

AS = SA for all S ∈ S.

Naturally enough, we set S ′′ := (S ′)′ and call this the bicommutant of the set S.
Obviously, S ⊆ S ′′. Von Neumann studied the special case where S = S ′′. A subset
A of L(X, X) is called a ∗-subalgebra iff A, B ∈ L(X, X) and α, β ∈ C imply that
the operators αA + βB, AB, A∗ are also contained in L(X, X).

By definition, a von Neumann algebra is a ∗-subalgebra A of L(X, X) with
unit element and A′′ = A.

This definition is purely algebraic. Equivalently, one can characterize von Neumann
algebras in topological terms by using weak convergence. Let us discuss this.

Weak operator convergence. Let (An) be a sequence of linear operators
An : X → X in L(X, X), n = 1, 2, . . . We write

w − lim
n→∞

An = A

iff A ∈ L(X, X) and limn→∞〈ψ|Anϕ〉 = 〈ψ|Aϕ〉 for all ψ, ϕ ∈ X. This is called
the weak operator convergence. This corresponds to the convergence of matrix
elements. In terms of physics, this guarantees the convergence of expectation values.
Generalizing this, let (Aν)ν∈N be a generalized sequence in L(X, X) with a directed
index set N (see page 240). We write

w − lim
ν→∞

Aν = A (7.305)

iff A ∈ L(X, X) and limν→∞〈ψ|Aνϕ〉 = 〈ψ|Aϕ〉 for all ψ, ϕ ∈ X, in the sense of
generalized convergence. In addition, let us introduce the following two notions of
convergence.

172 V. Sunder, An Invitation to von Neumann Algebras, Springer, Berlin, 1987
(reprinted with permission).
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• s − limν→∞ Aν = A iff limν→∞ ||(A − Aν)ϕ|| = 0 for all ϕ ∈ X (strong operator
convergence);

• u − limν→∞ Aν = A iff limν→∞ ||Aν − A|| = 0 (uniform operator convergence).

Recall that ||Aν −A|| = sup||ϕ||≤1 ||(Aν −A)ϕ||. This justifies the notion of uniform
operator convergence.

Semi-norms. A map p : L → R on the complex (resp. real) linear space L is
called a semi-norm iff for all A, B ∈ L and all complex (resp. real) numbers α the
following hold:

• p(A) ≥ 0,
• p(αA) = |α|p(A), and
• p(A + B) ≤ p(A) + p(B).

If, in addition, p(A) = 0 implies A = 0, then p is a norm.
Topologies on L(X, X). (i) Weak operator topology. For fixed ψ, ϕ ∈ X, define

pψ,ϕ(A) := |〈ψ|Aϕ〉| for all A ∈ L(X, X).

This is a semi-norm on L(X, X). A subset S of L(X, X) is called weakly open iff,
for each operator A0 ∈ S, there exist a finite family ψ1, ϕ1, . . . , ψn, ϕn of elements
in X and a number ε > 0 such that the set

{A ∈ L(X, X) : pψj ,ϕj (A − A0) < ε, j = 1, . . . , n}

is contained in S. This generates a topology on L(X, X) called the weak operator
topology. A subset of L(X, X) is called weakly closed iff its complement in L(X, X)
is weakly open.

A subset S of L(X, X) is weakly closed iff, for all generalized sequences
(Aν) in S, it follows from w − limν→∞ Aν = A that A ∈ S.

(ii) Strong operator topology. Similarly, we obtain the strong operator topology
by replacing pψ,ϕ by the semi-norm pϕ(A) := ||Aϕ||. A subset S of L(X, X) is called
strongly open iff, for each operator A0 ∈ S, there exist a finite family ϕ1, . . . , ϕn of
elements in X and a number ε > 0 such that the set

{A ∈ L(X, X) : pϕj (A − A0)} < ε, j = 1, . . . , n}

is contained in S. This generates a topology on L(X, X) called the strong operator
topology. A subset of L(X, X) is called strongly closed iff its complement in L(X, X)
is strongly open.

A subset S of L(X, X) is strongly closed iff, for all generalized sequences
(Aν) in S, it follows from s − limν→∞ Aν = A that A ∈ S.

(iii) Uniform operator topology. This topology is obtained by replacing pϕ by
the norm p(A) := ||A||. A subset S of L(X, X) is called uniformly open iff, for each
operator A0 ∈ S, there exists a number ε > 0 such that the set

{A ∈ L(X, X) : p(A − A0) < ε}

is contained in S. This generates a topology on L(X, X) called the uniform operator
topology.173 A subset of L(X, X) is called uniformly closed iff its complement in
L(X, X) is uniformly open.

173 This topology coincides with the topology induced by the Banach space structure
on L(X, X).
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A subset S of L(X, X) is uniformly closed iff, for all classical sequences
(An)n∈N in S, it follows from u − limn→∞ An = A that A ∈ S.

The bicommutant theorem. The topological characterization of von Neu-
mann algebras reads as follows.

Theorem 7.69 Let X be a complex separable non-trivial Hilbert space. For a given
∗-subalgebra A of L(X, X) with unit element, the following three statements are
equivalent:

(i) A is a von Neumann algebra (i.e., A′′ = A).
(ii) A is weakly closed in L(X, X).
(iii) A is strongly closed in L(X, X).

More general, the following hold: If A is a ∗-subalgebra of L(X, X) with unit
element, then the closure of A in the weak (resp. strong) topology on L(X, X)
coincides with the bicommutant A′′.

Corollary 7.70 A ∗-subalgebra algebra of L(X, X) is a C∗-algebra iff it is uni-
formly closed in L(X, X).

Consequently, each von Neumann algebra is a C∗-algebra. But the converse is sel-
dom true. For the proofs, we refer to P. Kadison and J. Ringrose, Fundamentals of
the Theory of Operator Algebras, Vol. 1, Academic Press, New York, 1983. Many
beautiful applications of von Neumann algebras to harmonic analysis can be found
in

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, PWN, Warsaw, 1968.

Examples. Suppose that the operator A ∈ L(X, X) is self-adjoint (i.e.,
A∗ = A). The bicommutant A′′ of the one-point set A := {A} is the smallest
von Neumann algebra in L(X, X) containing the self-adjoint operator A.

Let S be a subset of L(X, X) with the property that A ∈ S implies A∗ ∈ S.
Then:

(i) The commutant S ′ is a von Neumann algebra.
(ii) The bicommutant S ′′ is the smallest von Neumann algebra in L(X, X) con-

taining the set S.
(iii) S ′ = S ′′′.

By induction, this implies S ′ = S2n+1 and S ′′ = S2n+2 for all n = 1, 2, . . . That is,
all of the higher commutants are determined by S ′ and S ′′.

A von Neumann algebra is called a factor iff its center A ∩A′ is trivial (i.e., it
consists of the multiples of the unit operator, A ∩A′ = {αI : α ∈ C}).

The classification problem for von Neumann algebras. By von Neu-
mann’s spectral theory, a self-adjoint operator A ∈ L(X, X) on the Hilbert space
X can be represented by orthogonal projection operators Eλ (λ ∈ R) called the
spectral family of A. Now we consider the following generalization:

• self-adjoint operator ⇒ von Neumann algebra,
• spectral family ⇒ factors.

The building blocks of factors are orthogonal projections.

In contrast to general C∗-algebras, von Neumann algebras possess a rich
structure of orthogonal projections.
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Since orthogonal projections are observables corresponding to “questions,” von Neu-
mann algebras represent a nice tool for describing physical processes in quantum
theory. Murray and von Neumann showed that each von Neumann algebra can
be represented as a direct sum (or, more general, as a direct integral) of factors.
Therefore it remains to classify the factors.174

7.18.2 The Murray–von Neumann Classification of Factors

Let X be a complex separable non-trivial Hilbert space, and let the subset A of
L(X, X) be a von Neumann algebra which is a factor. The factor A is said to be of
type I, II, III iff it satisfies the following conditions, respectively:

Type I: A contains a minimal projection.
Type II: A contains no minimal projection, but does contain a non-zero projection.
Type III: A contains no non-zero finite projection.

Here, we use the following terminology. Let P(A) be the set of all orthogonal
projections P ∈ A. For P, Q ∈ A, we write Q ∼ P iff there exists an operator
U ∈ A such that Q = UU∗ and P = U∗U . This is an equivalence relation on P(A).

• The orthogonal projection P is called finite iff it follows from Q(X) ⊆ P (X) and
Q ∼ P that Q = P.

• The orthogonal projection P is called minimal iff the following three conditions
are satisfied:
(α) P �= 0.
(β) P (X) is invariant under A′.
(γ) If a linear subspace Y of P (X) is invariant under A′, then Y is trivial (i.e.,
Y = {0} or Y = P (X)).
Minimal projections are always finite (and non-zero).

For example, if A = L(X, X), then P is finite iff the projection space P (X) is finite-
dimensional. Moreover, precisely the orthogonal projections onto one-dimensional
linear subspaces are minimal.

The generalized dimension function of factors. For each factor A, there
exists a function d : P(A) → [0,∞] which has the following properties:

(i) Q ∼ P iff d(Q) = d(P ).
(ii) If P (X) is orthogonal to Q(X), then d(P + Q) = d(P ) + d(Q).
(iii) P is finite iff d(P ) < ∞, and d(P ) = 0 iff P = 0.

The function d is uniquely determined, up to a positive multiplicative constant. For
a suitable choice of this constant, the function d has the following range:

Type In : {0, 1, . . . , n}, where n = 1, 2, . . . or n = ∞.
Type II1: [0, 1].
Type II∞: [0,∞].
Type III: {0,∞}.
A factor A is of type In iff A = L(X, X) where dim X = n. In this simple case,
d(Q) = dim P (X).

174 Direct integrals of Hilbert spaces generalize direct sums of Hilbert spaces by
summing over general index sets with respect to a measure. This will be con-
sidered in Vol. IV on quantum mathematics (see also K. Maurin, Generalized
Eigenfunction Expansions and Unitary Representations of Topological Groups,
PWN, Warsaw, 1968).
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7.18.3 The Tomita–Takesaki Theory and KMS-States

The Tomita–Takesaki theorem is a beautiful example of “prestabilized
harmony” between physics and mathematics.175

On the one hand, it is intimately related to the Kubo–Martin–Schwinger
(KMS) condition. On the other hand it initiated a significant advance in
the classification theory of von Neumann algebras and led to powerful
computational techniques.

Rudolph Haag, 1996

KMS-states in thermodynamic equilibrium. The physicists Kubo, Martin and
Schwinger discovered in the late 1950s that states of thermodynamic equilibrium
can be characterized by special analyticity properties of the Green’s function.176

In 1967 it was shown by Haag, Hugenholtz, and Winnink that this can be for-
mulated in terms of von Neumann algebras. In fact, it turned out that this was
closely related to the so-called Tomita–Takesaki theory for von Neumann algebras,
which was created by the Japanese mathematician Tomita in the 1960s, by purely
mathematical motivation.177 Roughly speaking, the Tomita–Takesaki theory for-
mulates conditions which guarantee the existence of a dynamics on a von Neumann
algebra that can be used in order to describe the dynamics of a physical state in
thermodynamic equilibrium.

The basic mathematical idea of the Tomita–Takesaki theory. Let A be
a von Neumann algebra of operators on the complex separable non-trivial Hilbert
space X. Suppose that there is a vector ψ0 in X which has the following two
properties:

• ψ0 is cyclic, that is, the set {Aψ0 : A ∈ A} is dense in X.
• ψ0 is separating, that is, if A, B ∈ A and A �= B, then Aψ0 �= Bψ0.

Define the operator S : dom(S) → X by setting178

S(Aψ0) := A∗ψ0 for all A ∈ A.

Then, the operator S has a closure S̄. By Problem 7.24, there exists the unique
polar decomposition

S = JΔ1/2

with the following properties:

• The so-called modular operator Δ := S̄∗S̄ is self-adjoint and 〈ψ|Δψ〉 ≥ 0 for all
ψ ∈ dom(Δ).

175 The term “prestabilized harmony” was introduced by Leibniz (1646–1716) in his
philosophy of monads (which are ultimate units of being).
R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer, Berlin,
1996 (reprinted with permission).

176 R. Kubo, Statistical mechanical theory of irreversible processes, J. Math. Soc.
Japan 12 (1957), 570–586.
P. Martin and J. Schwinger, Theory of many-particle systems. Phys. Rev. 115
(1959), 1342–1373.

177 R. Haag, N. Hugenholtz, and M. Winnink, On the equilibrium states in quantum
statistical mechanics, Commun. Math. Phys. 5 (1967), 215–236.
M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and Its Applications,
Springer, Berlin, 1970.

178 Since A∗(αϕ) = α†A∗ϕ for all complex numbers α, the operator S is antilinear,
that is, A(αϕ + βψ) = α†A + β†B for all ϕ, ψ ∈ X and all α, β ∈ C.
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• The so-called modular conjugation operatorJ : X → X is antiunitary, and it has
the property J2 = I.179

For all times t ∈ R, we have

ΔitAΔ−it = A,

and JAJ = A.180 Setting Ut(A) := ΔitAΔ−it for all A ∈ A, the map

Ut : A → A

is a C∗-automorphism of the von Neumann algebra A, and the family {Ut}t∈R

forms a one-parameter group of C∗-automorphisms on A (see page 634). These
C∗-automorphisms are called modular automorphisms.

For the general mathematical theory of von Neumann algebras together with
numerous applications to quantum physics, see the hints for further reading on page
677. We will come back to this in Vol. IV on quantum mathematics.

7.19 Connes’ Noncommutative Geometry

The abstract theory of commutative Banach algebras was initiated by
Mazur (1905–1981) in 1936, but it blossomed in the hands of Gelfand
(born 1913), who in one brilliant study gave it the final perfect shape.
This was the Gelfand theory of maximal ideals, or the Gelfand spectral
theory looking at it the other way. . . The Gelfand spectral theory soon
became a powerful tool and a bonanza of new ideas. Gelfand himself,
Naimark (1909–1978), and others of his co-workers found a multitude of
models and applications.181

Krysztof Maurin, 1968

Noncommutative geometry amounts to a program of unification of math-
ematics under the aegis of the quantum apparatus, that is, the theory of
operators and of C∗-algebras. Largely the creation of a single person, Alain
Connes, noncommutative geometry is just coming of age as the new century
opens.182 The bible of the subject is, and will remain, Connes’ Noncommu-
tative Geometry (1994), itself the “3.8 expansion” of the French Géométrie
non commutative from 1990. These are extraordinary books, a “tapestry”
of physics and mathematics, in the words of Vaughan Jones, and the work
of a “poet of modern science,” according to Daniel Kastler, replete with
subtle knowledge and insights apt to inspire several generations.

179 That is, for all ϕ, ψ ∈ X and all complex numbers, we have 〈Jψ|Jϕ〉 = 〈ψ|ϕ〉†,
and the operator J is antilinear.

180 By definition, BAC := {BAC : A ∈ A.}.
181 K. Maurin, Generalized Eigenfunction Expansions and Unitary Representations

of Topological Groups, Polish Scientific Publishers, Warsaw, 1968 (reprinted with
permission). See also the footnote on page 628.

182 Alain Connes (born 1947) works at the Collège de France, Paris, and at the

l’Institut des Hautes Études Scientifiques (IHES) (Institute of Advanced Scien-
tific Studies), Bures-sur-Yvette (near Paris). For his contributions to the theory
of von Neumann algebras of type III, Connes was awarded the Fields medal in
1983. See A. Connes, Une classification des facteurs de type III, Ann. Scient.

École Norm. Sup. 6 (1973), 133–252 (in French).
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Despite an explosion of research by some of the world’s leading mathe-
maticians, and a bouquet of applications – to the reinterpretation of the
phenomenological Standard Model of particle physics as a new space-time
geometry, the quantum Hall effect, strings, renormalization and more in
quantum field theory – the six years that have elapsed since the publica-
tion of Noncommutative Geometry have seen no sizeable book returning
to the subject. This volume aspires to fit snugly in that gap, but does not
pretend to fill it. It is rather meant to be an introduction to some of the
core topics of Noncommutative Geometry.183

José Gracia-Bondia, Joseph Várilly, and Héctor Figueroa, 2001

If M is a nonempty compact separated topological space (e.g., a bounded closed
subset of R

n), then the C∗-algebra C(M) knows a lot about the geometry of M.
For example, for a given point P , the set JP of all continuous functions

f : M → C

with f(P ) = 0 forms a maximal C∗-ideal of C(M).184 Conversely, each maximal
C∗-ideal of C(M) can be obtained this way. Thus,

P �→ JP

is a bijective map between the space M and the set of maximal ideals of the function
algebra C(M). Furthermore, the Gelfand–Naimark structure theorem tells us that,
for each commutative C∗-algebra A, we have the C∗-isomorphism

A � C(M)

where M is the set of maximal C∗-ideals of A.

The basic idea of Connes’ noncommutative geometry is to replace commu-
tative C∗-algebras by noncommutative C∗-algebras.

In this setting, properties of noncommutative geometry are identified with prop-
erties of noncommutative C∗-algebras. This identification is motivated by the cor-
responding identification between classical geometric properties and properties of
commutative C∗-algebras. From the physical point of view, the idea is that states
and observables are primary, but space and time are secondary. For example, physi-
cists assume that space and time did not exist shortly after the Big Bang of our
universe, but only physical states existed. The familiar structure of our space-time
was only created later on by a stochastic process. Furthermore, below the Planck
length it is assumed that space and time loose their classical properties in the
setting of quantum gravity. Therefore, noncommutative geometry is one of the can-
didates for creating a mathematical theory of quantum gravity. Noncommutative
geometry is based on so-called spectral triplets for elliptic Dirac operators. As an
introduction to noncommutative geometry, we recommend:

J. Várilly, Lectures on Noncommutative Geometry, European Mathemat-
ical Society 2006.

M. Paschke, An essay on the spectral action principle and its relation to
quantum gravity, pp. 127–150. In: B. Fauser, J. Tolksdorf, and E. Zeid-
ler (Eds.), Quantum Gravity: Mathematical Models and Experimental
Bounds, Birkhäuser, Basel, 2006.

183 J. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommutative
Geometry, Birkhäuser, Boston, 2001 (reprinted with permission).

184 This means that the C∗-ideal JP cannot be extended to a larger C∗-ideal of
C(M) which is different from the trivial ideal C(M).
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We also refer to the comprehensive monograph:

M. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommuta-
tive Geometry, Birkhäuser, Boston, 2001.

A detailed study of the applications of noncommutative geometry to the Standard
Model in particle physics can be found in the comprehensive monograph:

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Rhode Island, 2008.
Internet: http://www.math.fsu.edu/∼marcolli/bookjune4.pdf

In the 1930s, John von Neumann discovered that operator algebras play a funda-
mental role in the mathematical formulation of quantum mechanics. Noncommu-
tative geometry stands in this tradition and allows us to approach the Standard
Model in elementary particle physics.

In 2006 the first volume of the Journal of Noncommutative Geometry appeared.
The editor-in-chief is Alain Connes. The following list of topics covered by the
journal shows the scope of modern noncommutative geometry:

• operator algebras,
• Hochschild and cyclic cohomology,
• K-theory and index theory,
• measure theory and topology of noncommutative spaces,
• spectral geometry of noncommutative spaces,
• noncommutative algebraic geometry,
• Hopf algebras and quantum groups,
• foliations, gruppoids, stacks, gerbes,
• deformations and quantizations,
• noncommutative spaces in number theory and arithmetic geometry,
• noncommutative geometry in physics: quantum field theory, renormalization,

gauge theory, string theory, gravity, mirror symmetry, solid state physics, sta-
tistical mechanics.

7.20 Jordan Algebras

Let O(X) denote the set of all observables in L(X, X) (i.e., the set of all linear
continuous self-adjoint operators A : X → X), where X is a complex Hilbert space.
If A, B ∈ O(X), then the usual operator product AB is contained in O(X) iff
AB = BA. This follows from

(AB)∗ = B∗A∗ = BA.

Thus, as a rule, O(X) is not an algebra with respect to the operator product. In
order to cure this defect, Pascal Jordan (1902–1980) introduced the product

A ◦ B := 1
2
(AB + BA).

Then the set O(X) becomes a real algebra with respect to the real linear com-
binations αA + βB and the Jordan product A ◦ B. This commutative algebra of
observables is called the real Jordan algebra of the Hilbert space X. As a rule,
Jordan algebras are not associative.185 The theory of Jordan algebras is a branch

185 P. Jordan, On the multiplication of quantum-mechanical quantities I, II, Z. Phys.
80 (1933), 285–291; 87 (1934), 505–512 (in German).
P. Jordan, J. von Neumann, and N. Wigner, On an algebraic generalization of
the quantum mechanical formalism, Ann. Math. 35 (1934), 29–64.
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of modern mathematics.186 In 1994, Zelmanov was awarded the Fields medal for
his contributions to Jordan algebras.

7.21 The Supersymmetric Harmonic Oscillator

The foundations of the theory of commuting and anticommuting variables
were laid by Schwinger in 1953, who presented the analysis for commuting
and anticommuting variables on the physical level of strictness187. . .
The first mathematical formalism that made it possible to operate with
commuting and anticommuting coordinates was Martin’s algebraic formal-
ism proposed in 1959188. . .
In 1974, Salam and Strathdee proposed a very apt name for a set of su-
perpoints.189 After this work and the work by Wess and Zumino190 were
published, the superspace became a foundation for the most important
physical theories.191

Andrei Khrennikov, 1997

In contrast to Heisenberg’s harmonic quantum oscillator, the ground state
energy of the supersymmetric harmonic oscillator is equal to zero.

The golden rule of supersymmetry

Supersymmetry is a relativistic symmetry between bosons and fermions.
This is the only known way available at the present to unify the four-
dimensional space-time and internal symmetries of the S-matrix in rela-
tivistic particle theory. 192

Prem Srivasta, 1985

Supersymmetry describes bosons and fermions in a unified way. Recall that the
bosonic harmonic oscillator has the energy values

186 H. Upmeier, Jordan Algebras in Analysis, Operator Theory, and Quantum Me-
chanics, Amer. Math. Soc., Rhode Island, 1987.
T. Springer and F. Veldkamp, Octonions, Jordan Algebras, and Exceptional
Groups, Springer, Berlin, 2000.
K. McCrimmon, A Taste of Jordan Algebras, Springer, New York, 2004.

187 J. Schwinger, Note on the quantum dynamical principle, Phil. Mag. 44 (1953),
1171–1193.

188 J. Martin, Generalized classical analysis and “classical” analogue of a Fermi
oscillator, Proc. Royal Soc. A251 (1959), 536–542; The Feynman principle for a
Fermi system, Proc. Royal Soc. A251 (1959), 543–549.

189 A. Salam and J. Strathdee, Supergauge transformations, Nucl. Phys. B76 (1974),
477–483; Feynman rules for superfields, Nucl. Phys. B86 (1975), 142–152.

190 J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nucl.
Phys. B70 (1974), 39–50.

191 A. Khrennikov, Superanalysis, Kluwer, Dordrecht, 1997 (reprinted with permis-
sion).

192 R. Haag, J. Lopuszanski, and M. Sohnius, All possible generators of supersym-
metries of the S-matrix, Nucl. Phys. B88 (1975), 257–274.
The supersymmetric Standard Model in particle physics is studied in S. Wein-
berg, Quantum Field Theory, Vol. 3, Cambridge University Press, 1995.
P. Srivasta, Supersymmetry, Superfields and Supergravity, Adam Hilger, Bristol,
1985.
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En = �ω(n + 1
2
), n = 0, 1, 2, . . . (7.306)

As we will show below, the energy levels of the supersymmetric harmonic oscillator
are given by

Enb,nf = �ω(nb + nf ), nb = 0, 1, 2, . . . , nf = 0, 1.

In terms of physics, this is the energy of nb bosons and nf fermions. The point is
that an infinite number of bosonic harmonic oscillators has the ground state energy

∞
X

k=0

1
2
�ω = +∞.

This causes the main trouble in quantum field theory. In contrast to this patholog-
ical situation, the ground state energy of an arbitrary number of supersymmetric
harmonic oscillators is equal to zero, since E0,0 = 0.

A supersymmetric harmonic oscillator is the superposition of a bosonic
harmonic oscillator and a fermionic harmonic oscillator. The nonzero
ground state energies of the two harmonic oscillators compensate each
other.

Because of the Pauli principle, it is not possible that two fermions are in the same
energy state of a harmonic oscillator. This motivates why the number nf of fermions
in an energy eigenstate only attains the values nf = 0, 1.

The supersymmetric Hamiltonian. Let us introduce the following Hamil-
tonians:

(B) Bosonic Hamiltonian: Hbosonic := �ω(a†a + 1
2
).

(F) Fermionic Hamiltonian: Hfermionic := �ω(b†b − 1
2
).

(S) Supersymmetric Hamiltonian:

Hsuper := �ω(a†a ⊗ I + I ⊗ b†b). (7.307)

As a rule, physicists briefly write Hsuper = �ω(a†a + b†b).
Hilbert spaces. The bosonic Hamiltonian acts on the so-called bosonic Hilbert

space Xbosonic := L2(R) with the energy eigenstates

Hbosonic|nb〉 = Enb |nb〉, nb = 0, 1, 2, . . .

where Enb := �ω(nb + 1
2
). The bosonic eigenstates

|nb〉, nb = 0, 1, 2, . . .

form a complete orthonormal system on the Hilbert space Xbosonic. In terms of
physics, the state |nb〉 describes nb bosons.

The fermionic Hamiltonian acts on the Hilbert space Xfermionic := C
2 with the

energy eigenstates

Hfermionic|nf 〉 = Enf |nf 〉, nf = 0, 1

where Enf := �ω(nf − 1
2
). The explicit form of the states |0〉 and |1〉 will be given

below. The state |nf 〉 corresponds to nf fermions.
Bosonic-fermionic states. Let us now introduce the Hilbert space
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Xsuper := Xbosonic ⊗ Xfermionic.

The states
|nb〉 ⊗ |nf 〉, nb = 0, 1, 2, . . . , nf = 0, 1

form a complete orthonormal system of Xsuper. In terms of physics, the state
|nb〉 ⊗ |nf 〉 corresponds to nb bosons and nf fermions.193 For the supersymmet-
ric Hamiltonian, we get

Hsuper = Hbosonic ⊗ Hfermionic.

This operator acts on the Hilbert space Xsuper. Explicitly,

Hsuper(|nb〉 ⊗ |nf 〉) = Hbosonic|nb〉 ⊗ |nf 〉 + |nb〉 ⊗ Hfermionic|nf 〉.

Hence
Hsuper(|nb〉 ⊗ |nf 〉) = Enb,nf (|nb〉 ⊗ |nf 〉)

along with the energies

Enb,nf := �ω(nb + nf )

where nb = 0, 1, 2, . . . and nf = 0, 1. This implies that the ground state |0〉 ⊗ |0〉 of
the supersymmetric harmonic oscillator has zero energy, that is,

Hsuper(|0〉 ⊗ |0〉) = 0.

Bosonic creation and annihilation operators. Set a− := a and a+ := a†.
For the bosonic annihilation operator a− and the bosonic creation operator a+, we
have194

[a−, a+]− = I, [a−, a−]− = [a+, a+]− = 0.

Furthermore, by Sect. 7.2 on page 432, for n = 0, 1, 2, . . . we have

a−|n + 1〉 =
√

n + 1 |n〉, a+|n〉 =
√

n + 1 |n + 1〉.

Fermionic creation and annihilation operators. For the fermionic anni-
hilation operator b− and the fermionic creation operator b+, we get

[b−, b+]+ = I, [b−, b−]+ = [b+, b+]+ = 0.

In particular, (b+)2 = (b−)2 = 0. Furthermore,

b−|0〉 = 0, b−|1〉 = |0〉, b+|0〉 = |1〉, b+|1〉 = 0.

Explicitly, we set

|0〉 :=

 

1

0

!

, |1〉 :=

 

0

1

!

.

The states |0〉 and |1〉 form a complete orthonormal system of the Hilbert space
Xfermionic. That is, each element χ ∈ Xfermionic can be uniquely represented as

χ = α|0〉 + β|1〉, α, β ∈ C.

193 Physicists briefly write |nb〉|nf 〉.
194 Recall that [A, B]± := AB ± BA.
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In the language of matrices, χ =

 

α

β

!

. Moreover, we define

b− :=

 

0 1

0 0

!

, b+ :=

 

0 0

1 0

!

, N := b+b− =

 

0 0

0 1

!

.

Since N |0〉 = 0 and N |1〉 = |1〉, the operator N is called the fermionic particle
number operator. Obviously, b+ is the adjoint matrix to b−, i.e., b+ = (b−)†.

Supersymmetric creation and annihilation operators. We want to write
the supersymmetric Hamiltonian in the form

Hsuper = �ω(Q+Q− + Q−Q+). (7.308)

To this end, we introduce the operators

Q+ := a− ⊗ b+, Q− := a+ ⊗ b−

called the supersymmetric creation operator Q+ and the supersymmetric annihila-
tion operator Q−. Explicitly,

Q+(|nb〉 ⊗ |nf 〉) = a−|nb〉 ⊗ b+|nf 〉

and
Q−(|nb〉 ⊗ |nf 〉) = a+|nb〉 ⊗ b−|nf 〉.

For example,

Q+(|1〉 ⊗ |0〉) = |0〉 ⊗ |1〉, Q−(|0〉 ⊗ |1〉) = |1〉 ⊗ |0〉.

Thus, the operator Q+ sends one boson to one fermion (resp. the operator Q− sends
one fermion to one boson). We have

[Q+, Q+]+ = [Q−, Q−]+ = 0.

This is equivalent to (Q+)2 = (Q−)2 = 0. In fact,

Q+Q+ = (a− ⊗ b+)(a− ⊗ b+) = a−a− ⊗ b+b+ = 0,

since (b+)2 = 0. Similarly, we get (Q−)2 = 0.
Let us now prove (7.308). It follows from

Q+Q− = (a− ⊗ b+)(a+ ⊗ b−) = a−a+ ⊗ b+b−

together with a−a+ = I + a+a− that

Q+Q− = (I + a+a−) ⊗ b+b−.

Similarly,

Q−Q+ = (a+ ⊗ b−)(a− ⊗ b+) = a+a− ⊗ b−b+ = a+a− ⊗ (I − b+b−).

Therefore,
Q+Q− + Q−Q+ = I ⊗ b+b− + a+a− ⊗ I.

This yields (7.307), (7.308).
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Supersymmetric invariance of the supersymmetric Hamiltonian. We
claim that

[Hsuper, Q
+]− = [Hsuper, Q

−]− = 0.

To prove this, observe that Q+Q+ = 0. Hence

(Q+Q− + Q−Q+)Q+ − Q+(Q+Q− + Q−Q+) = Q+Q−Q+ − Q+Q−Q+ = 0.

This implies [Hsuper, Q
+]− = 0. Similarly, [Hsuper, Q

−]− = 0.
Perspective. Supersymmetry plays an important role in modern quantum field

theory. We will come back to this in later volumes. There exists a huge amount of
literature on supersymmetric models in quantum theory. Some hints for further
reading can be found on page 679.

7.22 Hints for Further Reading

Textbooks on Quantum Mechanics

We refer to the following classic textbooks which use the language of physicists:

P. Dirac, The Principles of Quantum Mechanics, Clarendon Press, Oxford,
1930.

V. Fock, Fundamentals of Quantum Mechanics, Nauka, Moscow, 1931 (in
Russian). (English edition: Mir, Moscow, 1978.)

R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures in
Physics, Addison-Wesley, Reading, Massachusetts, 1963.

L. Landau and E. Lifschitz, Course of Theoretical Physics, Vol. 3: Non-
Relativistic Quantum Mechanics, Butterworth-Heinemann, Oxford, 1982.

J. Schwinger, Quantum Mechanics, Springer, New York, 2001.

F. Dyson, Advanced Quantum Mechanics, Dyson’s 1951 Cornell Lecture
Notes on Quantum Electrodynamics, Cornell University, Ithaca, New York.
World Scientific, Singapore, 2007.

Much material can be found in the following handbooks:

G. Drake (Ed.), Springer Handbook of Atomic, Molecular, and Optical
Physics, Springer, Berlin, 2005.

Encyclopedia of Mathematical Physics, Vols. 1–5. Edited by J. Françoise,
G. Naber, and T. Tsun, Elsevier, Amsterdam, 2006.

Modern Encyclopedia of Mathematical Physics, Vols. 1, 2. Edited by I.
Araf’eva and D. Sternheimer, Springer, Berlin, 2009 (to appear).

Furthermore, we recommend:

A. Messiah, Quantum Mechanics, Vols. 1, 2, North-Holland, Amsterdam,
1961.

J. Sakurai, Advanced Quantum Mechanics, Reading, Massachusetts, 1967.

L. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1968.

M. Mizushima, Quantum Mechanics of Atomic Spectra and Atomic Struc-
ture, Benjamin, New York, 1970.

A. Galindo and P. Pascual, Quantum Mechanics, Vols. 1, 2, Springer,
Berlin, 1990.
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A. Bohm, Quantum Mechanics: Foundations and Applications, Springer,
Berlin, 1994.

J. Sakurai and San Fu Tuan, Modern Quantum Mechanics, Benjamin and
Cummings, New York, 1994.

E. Merzbacher, Quantum Mechanics, Wiley, New York, 1998.

J. Basdevant and J. Dalibard, Quantum Mechanics, Springer, Berlin, 2002.

F. Schwabl, Quantum Mechanics, Springer, Berlin, 2002.

F. Schwabl, Advanced Quantum Mechanics, Springer, Berlin, 2003.

N. Straumann, A Basic Course on Non-relativistic Quantum Mechanics,
Springer, Berlin, 2002 (in German).

K. Gottfried and Tung-Mow Yan, Quantum Mechanics: Fundamentals,
Springer, New York, 2003.

F. Scheck, Quantum Physics, Springer, Berlin, 2007.

Exercises can be found in:

S. Flügge, Practical Quantum Mechanics, Vols. 1, 2, Springer, Berlin, 1979.

J. Basdevant, The Quantum-Mechanics Solver: How to Apply Quantum
Theory to Modern Physics, Springer, Berlin, 2000.

V. Radanovic, Problem Book in Quantum Field Theory, Springer, New
York, 2006.

Visualizations of solutions in quantum mechanics are represented in:

S. Brandt and H. Dahmen, The Picture Book of Quantum Mechanics,
Springer, New York, 1995.

B. Thaller, Visual Quantum Mechanics, Springer, New York, 2000.

B. Thaller, Advanced Visual Quantum Mechanics, Springer, New York,
2005.

Mathematical Methods in Quantum Mechanics

The classic monograph was written by

J. von Neumann, Mathematical Foundations of Quantum Mechanics (in
German), Springer, Berlin, 1932. (English edition: Princeton University
Press, 1955.)

Furthermore, we recommend:

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols.
1–4, Academic Press, New York, 1972ff.

M. Schechter, Operator Methods in Quantum Mechanics, North-Holland,
Amsterdam, 1982.

H. Triebel, Higher Analysis, Barth, Leipzig, 1989.

F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.

E. Zeidler, Applied Functional Analysis: Applications to Mathematical
Physics, Springer, New York, 1995.

W. Steeb, Hilbert Spaces, Wavelets, Generalized Functions and Modern
Quantum Mechanics, Kluwer, Dordrecht, 1998.
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W. Thirring, Quantum Mathematical Physics: Atoms, Molecules, and
Large Systems, Springer, New York, 2002.

S. Gustafson and I. Sigal, Mathematical Concepts of Quantum Mechanics,
Springer, Berlin, 2003.

A. Komech, Lectures on Quantum Mechanics (nonlinear PDE point of
view), Lecture Notes No. 25 of the Max Planck Institute for Mathematics
in the Sciences, Leipzig. Internet: http://mis.mpg.de/preprints/ln/

F. Strocchi, An Introduction to the Mathematical Structure of Quantum
Mechanics: A Short Course for Mathematicians, Lecture Notes, Scuola
Normale Superiore, Pisa (Italy), World Scientific, Singapore, 2005.

V. Varadarajan, Geometry of Quantum Theory, Springer, New York, 2007.

For the applications of Lie group theory to the spectra of atoms and molecules, we
refer to the following classic monographs:

H. Weyl, The Theory of Groups and Quantum Mechanics, Springer, Berlin,
1929 (in German). (English edition: Dover, New York, 1931.)

B. van der Waerden, Group Theory and Quantum Mechanics, Springer,
Berlin, 1932 (in German). (English edition: Springer, New York, 1974.)

See also the hints for further reading on axiomatic quantum field theory given on
page 454. We also refer to a series of fundamental papers on the mathematical
foundations of quantum mechanics and statistical physics written by

E. Lieb, The Stability of Matter: From Atoms to Stars, Selecta of Elliott
Lieb. Edited by W. Thirring, Springer, New York, 2002.

E. Lieb, Inequalities: Selecta of Elliott Lieb. Edited by M. Loss, Springer,
New York, 2002.

The Path Integral

It is crucial that there exist specific methods for the explicit computation of path
integrals. This way, it is possible to obtain all of the explicitly known propagator
kernels in quantum mechanics. We especially recommend

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
Berlin, 1998.

This comprehensive handbook contains a large list of known path integrals (200
pages), about 1000 references, and a detailed discussion of the historical back-
ground. Much material about the computation of path integrals can also be found
in:

D. Khandekar, S. Lawande, and K. Bhagwat, Path-Integral Methods and
their Applications, World Scientific, Singapore, 1993.

H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer
Physics, World Scientific, River Edge, New York, 2004.

W. Dittrich and M. Reutter, Classical and Quantum Dynamics, Springer,
Berlin, 1999.

M. Chaichian and A. Demichev, Path Integrals in Physics. Vol. 1: Stochas-
tic Processes and Quantum Mechanics; Vol. 2: Quantum Field Theory,
Statistical Physics, and other Modern Applications, Institute of Physics
Publishing, Bristol, 2001.



670 7. Quantization of the Harmonic Oscillator

For the language used in physics, we recommend:

R. Feynman and R. Hibbs, Quantum Mechanics and Path Integrals,
McGraw-Hill, New York, 1965.

R. Feynman, Statistical Mechanics: A Set of Lectures, 14th edn., Addison
Wesley, Reading, Massachusetts, 1998.

A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press,
2003.

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1980.

L. Faddeev, Elementary Introduction to Quantum Field Theory, Vol. 1, pp.
513–552. In: P. Deligne et al. (Eds.), Lectures on Quantum Field Theory,
Vols. 1, 2, Amer. Math. Soc., Providence, Rhode Island, 1999.

M. Masujima, Path Integral Quantization and Stochastic Quantization,
Springer, Berlin, 2000.

M. Marinov, Path integrals in quantum theory: an outlook of basic con-
cepts, Phys. Rep. 60 (1) (1980), 1–57.

L. Schulman, Techniques and Applications of Path Integrals, Wiley, New
York, 1981.

G. Roepstorff, Path Integral Approach to Quantum Physics, Springer-
Verlag, New York, 1996.

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn.,
Clarendon Press, Oxford, 2003 (extensive presentation of about 1000 pages
based on the path-integral technique).

K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, Ox-
ford University Press, Oxford 2004.

For the language used in mathematics, we recommend:

B. Simon, Functional Integration and Quantum Physics, Academic Press,
New York, 1979.

J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics: A
Functional Integral Point of View, Springer, New York, 1981.

G. Johnson and M. Lapidus, M., The Feynman Integral and Feynman’s
Operational Calculus, Clarendon Press, Oxford, 2000.

S. Albeverio, R. Høegh-Krohn, and S. Mazzucchi, Mathematical Theory
of the Feynman Path Integral: An Introduction, Springer, Berlin, 2006.

P. Cartier and C. DeWitt-Morette, Functional Integration: Action and
Symmetries, Cambridge University Press, 2006

M. Freidlin, Functional Integration and Partial Differential Equations,
Princeton University Press, 1985

together with

M. Kac, Wiener and integration in function spaces, Bull. Amer. Math. Soc.
72 (1966), 52–68.

I. Daubechies and J. Klauder, Constructing measures for path integrals,
J. Math. Phys. 23 (1982), 1806–1822.

I. Daubechies and J. Klauder, Quantum-mechanical path integrals with
Wiener measure for all polynomial Hamiltonians, Math. Phys. 26 (1985),
2239–2256.
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J. Klauder, Beyond Conventional Quantization, Cambridge University
Press, 2000.

For the application of spectral methods in physics, we refer to:

K. Kirsten, Spectral Functions in Mathematics and Physics, Chapman,
Boca Raton, Florida, 2002

together with

E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Springer,
Berlin, 1995.

A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, and S. Zerbini, Analytic
Aspects of Quantum Fields, World Scientific, Singapore, 2003.

D. Vassilievich, Heat Kernel Expansion: Users’ Manual, Physics Reports
388 (2003), 279-360.

In terms of mathematics, we recommend:

H. Edwards, Riemann’s Zeta Function, Academic Press, New York, 1974.

P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer
Index Theorem, CRC Press, Boca Raton, Florida, 1995.

P. Gilkey, P., Asymptotic Formulae in Spectral Geometry, Chapman, CRC
Press, Boca Raton, Florida, 2003.

P. Gilkey, The spectral geometry of Dirac and Laplace type, pp. 289–326.
In: Handbook of Global Analysis. Edited by D. Krupka and D. Saunders,
Elsevier, Amsterdam, 2008.

Brownian Motion and the Wiener Integral

As an introduction, we recommend:

M. Mazo, Brownian Motion: Fluctuations, Dynamics, and Applications,
Oxford University Press, 2002.

Y. Rozanov, Introductory Probability Theory, Prentice-Hall, Englewood
Cliffs, New Jersey 1969.

L. Arnold, Stochastic Differential Equations, Krieger, Malabar, Florida,
1992.

L. Evans, An Introduction to Stochastic Differential Equations, Lectures
held at the University of California at Berkeley, 2005.
Internet: http://math.berkeley.edu/∼evans/SDE.course.pdf

Furthermore, we recommend the following books:

W. Hakenbroch and A. Thalmaier, Stochastische Analysis, Teubner, Stutt-
gart, 1994 (in German).

B. Øksendal, Stochastic Differential Equations, Springer, Berlin, 2003.

E. Nelson, Dynamical Theories of Brownian Motion, Princeton University
Press, Princeton, New Jersey, 1967.

K. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation,
Springer, New York, 1995.

B. Hughes, Random Walks and Random Environments, Vols. 1, 2, Claren-
don Press, Oxford, 1995.
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A. Borodin and P. Salminen, Handbook of Brownian Motion: Facts and
Formulas, Birkhäuser, Basel, 2002.

P. Del Moral, Feynman–Kac Formulae, Springer, New York, 2004.

The history of the Feynman–Kac formula is described in:

M. Kac, Enigmas of Chance: An Autobiography, Harper & Row, New York,
1985.

We also refer to the following classic survey article:

S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev.
Mod. Phys. 15 (1943), 1–89.

The WKB Method

As an introduction to singular perturbation theory, we recommend:

W. Eckhaus, Asymptotic Analysis of Singular Perturbation, North-Hol-
land, Amsterdam, 1979.

J. Kevorkian and J. Cole, Perturbation Methods in Applied Mathematics,
Springer, New York, 1981.

A. Nayfeh, Perturbation Methods, Wiley, New York, 1973.

A. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical,
Computational, and Experimental Methods, Wiley, New York, 1995.

Simple variants of the WKB method can be found in most textbooks on quantum
mechanics (see page 667). As an introduction to the relation between classical
mechanics and quantum mechanics, we refer to

W. Dittrich and M. Reutter, Classical and Quantum Dynamics, Springer,
Berlin, 1999.

This concerns the explicit computation of numerous physical examples related to
Schwinger’s action principle, the Kolmogorov–Arnold–Moser (KAM) theory, the
Maslov index, the Berry phase, and the Feynman path integral. As an introduction
to the mathematics of the WKB method, we recommend the monographs by

V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc.,
Providence, Rhode Island, 1989.

V. Maslov and M. Fedoryuk, Semiclassical Approximation in Quantum
Mechanics, Reidel, Dordrecht, 1981.

B. Helffer, Semiclassical Analysis, World Scientific, Singapore, 2003.

V. Nazaikinskii, B. Schulze, and B. Sternin, Quantization Methods in Dif-
ferential Equations, Taylor & Francis, London, 2002.

The relation between the path integral and the WKB method is studied in the
following monographs:

L. Schulmann, Techniques and Applications of Path Integrals, Wiley, New
York, 1981.

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
Berlin, 1998.

H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer
Physics, World Scientific, River Edge, New York, 2004.
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The intellectual father of the global WKB method is Victor Maslov (born 1930).
We refer to the following monographs:

V. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod,
Paris, 1972 (in French).

J. Leray, Analyse Lagrangien et mécanique quantique: une structure
mathématique apparantée aux développements asymtotiques et à l’indice
de Maslov, Strasbourgh, France, 1978 (in French). (English edition: MIT
Press, Cambridge, Massachusetts, 1981.)

Quantum chaos. Observe that the WKB method can also be applied to quan-
tum chaos. This means that the corresponding classical dynamical system is chaotic.
Here, Choquardt’s expansion formula and Gutzwiller’s trace formula are crucial.195

This can be found in:

M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New
York, 1990.

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
New York, 1998.

Commutation Relations and the Stone–von Neumann Uniqueness
Theorem

We recommend:

J. Rosenberg, A selective history of the Stone–von Neumann Theorem,
Contemporary Mathematics 365 (2004), 123–158.

S. Summers, On the Stone–von Neumann uniqueness theorem and its ram-
ifications, pp. 135–172. In: M. Rédei and M. Stöltzner (Eds.), John von
Neumann and the Foundations of Quantum Physics, Kluwer, Dordrecht,
2000.

C. Putnam, Commutation Properties of Hilbert Space Operators and Re-
lated Topics, Springer, Berlin, 1967.

D. Petz, An Invitation to the Algebra of Canonical Commutation Rela-
tions, Leuven University Press, Leuven (Belgium), 1990.

V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cam-
bridge University Press, 1990.

N. Woodhouse, Geometric Quantization, Oxford University Press, 1997.

F. Berezin, The Method of Second Quantization, Academic Press, New
York, 1966. (Second Russian edition: Nauka, Moscow, 1986.)

N. Bogoliubov et al., General Principles of Quantum Field Theory, Kluwer,
Dordrecht, 1990.

Yu. Berezansky and V. Kondratiev, Spectral Methods in Infinite-Dimen-
sional Analysis, Vols. 1, 2, Kluwer Dordrecht, 1995.

C. Bratelli and D. Robinson, Operator Algebras and Quantum Statistical
Mechanics, Vols. 1, 2, Springer, New York, 2002.

The relations between classical mechanics and geometric quantization are studied
in:

195 P. Choquardt, Semi-classical approach to general forces in the setting of Feyn-
man’s path integral, Helv. Phys. Acta 28 (1955), 89–157 (in French).
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R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978.

Classical papers on commutation relations for a finite and an infinite number of
operators are:

W. Heisenberg, Quantum-theoretical re-interpretation of kinematics and
mechanical relations, Z. Physik 33 (1925), 879–893 (in German).196

M. Born and P. Jordan, On quantum mechanics, Z. Phys. 35 (1925), 858–
888 (in German).

P. Dirac, The fundamental equations of quantum mechanics, Proc. Royal
Soc. London Ser. A 109 (1926), no. 752, 642–653.

M. Born, P. Jordan, and W. Heisenberg, On quantum mechanics II, Z.
Physik 35 (1926), 557–615 (in German).

W. Pauli, On the hydrogen spectrum from the standpoint of the new quan-
tum mechanics, Z. Phys. 36 (1926), 336–365 (in German).

P. Jordan and E. Wigner, On the Pauli exclusion principle, Z. Phys. 47
(1928), 631–651 (in German).

H. Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1928), 1–47
(in German).

M. Stone, Linear transformations in Hilbert space III, Proc. Nat. Acad.
Sci. U.S.A. 16 (1930), 172–175.

J. von Neumann, The uniqueness of the Schrödinger operators, Math. Ann.
104 (1931), 570–578 (in German).

V. Fock, Configuration space and second quantization, Z. Phys. 75 (1932),
622–647 (in German).

H. Groenewold, On the principles of elementary quantum mechanics, Phys-
ica 12 (1946), 405–460.

A. Wintner, The unboundedness of quantum-mechanical matrices, Phys.
Rev. 71 (2) (1947), 738–739.

H. Wielandt, On the unboundedness of the operators in quantum mechan-
ics, Math. Ann. 121 (1949), 21–23 (in German).

G. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16
(1949), 313–326.

L. van Hove, Sur certaines representations unitaires d’un groupe infini de
transformations. Mem. Acad. Royal Belgium (1951), 61–102.

J. Cook, The mathematics of second quantization, Trans. Amer. Math.
Soc. 74 (1953)(2), 222–245.

K. Friedrichs, Mathematical Aspects of the Quantum Theory of Fields,
Interscience Publishers, New York, 1953.

L. G̊arding and A. Wightman, Representations of the anticommutation
relations, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 617–621.

L. G̊arding and A. Wightman, Representations of the commutation rela-
tions, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 622–625.

196 The English translation of the classical papers by Born, Dirac, Jordan, Heisen-
berg, and Pauli can be found in B. van der Waerden (Ed.), Sources of Quantum
Mechanics (1917–1926), Dover, New York, 1968.
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I. Segal, Distributions in Hilbert space and canonical systems of operators,
Trans. Amer. Math. Soc. 88 (1958), 12–42.

I. Segal, Quantization of nonlinear systems, J. Math. Phys. 1 (1960), 468–
488.

I. Segal, Mathematical Problems of Relativistic Physics, Amer. Math. Soc.
Providence, Rhode Island, 1963.

V. Bargmann, On a Hilbert space of analytic functions and an associated
integral transform, Commun. Pure and Appl. Math. 14 (1961), 187–214.

G. Mackey, The Mathematical Foundations of Quantum Mechanics, Ben-
jamin, New York, 1963.

A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111
(1964), 143–211 (in French).

D. Kastler, The C∗-algebras of a free Boson field, Commun. Math. Phys.
1 (1965), 14–48.

G. Mackey, Induced Representations of Groups and Quantum Mechanics,
Benjamin, New York, 1968.

M. Rieffel, On the uniqueness of the Heisenberg commutation relations,
Duke Math. J. 39 (1972), 745–752.

G. Mackey, Unitary Group Representations in Physics, Probability, and
Number Theory, Benjamin, Reading, Massachusetts, 1978.

R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull.
Amer. Math. Soc. (N.S.) 3(2) (1980), 821–843.

H. Grosse and L. Pittner, A supersymmetric generalization of von Neu-
mann’s theorem, J. Math. Phys. 29(1) (1988), 110–118.

G. Mackey, The Scope and History of Commutative and Noncommutative
Harmonic Analysis, Amer. Math. Soc., Providence, Rhode Island, 1992.

A generalized version of the Stone–von Neumann uniqueness theorem plays a funda-
mental role in Ashtekhar’s loop gravity (which represents an approach to quantum
gravity). We refer to:

C. Fleischhack, Kinematical uniqueness of loop gravity, pp. 203–218. In: B.
Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Gravity, Birkhäuser,
Basel, 2006.

Weyl Quantization

As a comprehensive introduction to deformation quantization in mathematics and
physics, we recommend the following textbook which is based on the language of
modern differential geometry (vector bundles, symplectic geometry, Poisson geom-
etry, pseudo-differential operators):

S. Waldmann, Poisson Geometry and Deformation Quantization, Springer,
Berlin, 2007 (in German).

For formal proofs based on the language of physicists, we refer to:

A. Hirshfeld and P. Henselder, Deformation quantization in the teaching
of quantum mechanics, Am. J. Phys. 70 (2002), 537–547.

A. Hirshfeld and P. Henselder, Star products and perturbative quantum
field theory, Ann. Phys. 298 (2002), 352–393.

F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
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For rigorous proofs based on the language of mathematicians, we refer to:

L. Hörmander, The Weyl calculus of pseudo-differential operators, Com-
mun. Pure Appl. Math. 32 (1979), 359–443.

M. de Gosson, Symplectic Geometry and Quantum Mechanics, Birkhäuser,
Basel, 2006.

V. Nazaikinskii, B. Schulze, and B. Sternin, Quantization Methods in Dif-
ferential Equations, Taylor & Francis, London, 2002.
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M. Kontsevich, Deformation quantization of Poisson manifolds, Lett.
Math. Phys. 66(3) (2003), 157–216.

A. Cattaneo and G. Felder, A path integral approach to the Kontsevich
quantization formula, Commun. Math. Phys. 212 (2000), 591–611.

Concerning deformation quantization, we recommend the following books:

B. Fedosov, Deformation Quantization and Index Theory, Akademie-
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A. Perelomov, Generalized Coherent States and Their Applications, Sprin-
ger, Berlin, 1986.

M. Majid, Foundations of Quantum Group Theory, Cambridge University
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Its Applications, Cambridge University Press, 1995.
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S. Podleś and S. Woronowicz, Quantum deformation of Lorentz group,
Commun. Math. Phys. 130 (1990), 381–453.

M. Rieffel, Deformation quantization for actions of R
d, Mem. Amer. Math.

Soc. 106 (1993).

J. Wess, Gauge theories on noncommutative space-time treated by the
Seiberg–Witten method, pp. 179–192. In: U. Carow-Watamura et al.
(Eds.), Quantum Field Theory and Noncommutative Geometry, Springer,
Berlin, 2005.

H. Grosse and R. Wulkenhaar, Renormalisation of ϕ4-theory on noncom-
mutative R

4 in the matrix base, Commun. Math. Phys. 256 (2005), 305–
374.

A survey on different quantization methods can be found in:

P. Bandyopadhyay, Geometry, Topology, and Quantization, Kluwer, Dor-
drecht, 1996.

S. Ali and M. Englǐs, Quantization methods: a guide for physicists and
analysts, 2004. Internet: http://arxiv.org/math-ph/0405065

N. Woodhouse, Geometric Quantization, Oxford University Press, 1997.

We also recommend:

J. Śniatycki, Geometric Quantization and Quantum Mechanics, Springer,
New York, 1980.

N. Hurt, Geometric Quantization in Action, Reidel, Dordrecht, 1983.

S. Bates and A. Weinstein, Lectures on the Geometry of Quantization,
Amer. Math. Soc., Providence, Rhode Island, 1997.
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Furthermore, we refer to the following classic papers:

H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New
York, 1931.

H. Groenewold, On the principles of elementary quantum mechanics, Phys-
ica 12 (1946), 405–460.

J. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge
Phil. Soc. 45 (1949), 99–124.
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Statistical Physics

As an introduction to the vast literature on statistical physics, we recommend:

O. Bühler, A Brief Introduction to Classical, Statistical, and Quantum
Mechanics, Courant Lecture Notes, Amer. Math. Soc., Providence, Rhode
Island, 2006.

K. Huang, Statistical Physics, Wiley, New York, 1987.

R. Feynman, Statistical Mechanics: A Set of Lectures, 14th edn., Addison
Wesley, Reading, Massachusetts, 1998.

A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems,
McGraw-Hill, New York, 1971.

G. Mahan, Many-Particle Physics, Plenum Press, New York, 1990.

P. Martin and F. Rothen, Many-Body Problems and Quantum Field The-
ory, Springer, Berlin, 2002.

For the second law of thermodynamics, we refer to:

E. Lieb and J. Yngvason, A guide to entropy and the second law of ther-
modynamics, Notices Amer. Math. Soc. 45 (1998), 571–581.

E. Lieb and J. Yngvason, The physics and mathematics of the second law
of thermodynamics, Physics Reports 310(1) (1999), 1–96.

C∗-Algebras and von Neumann Algebras

Much material can be found in:

C. Bratelli and D. Robinson, Operator Algebras and Quantum Statistical
Mechanics, Vols. 1, 2, Springer, New York, 2002.

B. Blackadar, Operator Algebras: C∗-Algebras and von Neumann Alge-
bras. Springer, Berlin, 2005.
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As an introduction, we recommend:

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer,
New York, 1996.

H. Araki, Mathematical Theory of Quantum Fields, Oxford University
Press, New York, 1999.

W. Thirring, Quantum Mathematical Physics: Atoms, Molecules, and
Large Systems, Springer, New York, 2002.

Further applications to physics can be found in:

R. Streater and R. Wightman, PCT, Spin, Statistics, and All That, Ben-
jamin, New York, 1968.

G. Emch, Algebraic Methods in Statistical Physics and Quantum Field
Theory, Wiley, New York, 1972.

J. Glimm and A. Jaffe, Quantum Field Theory and Statistical Mechanics:
Expositions, Birkhäuser, Boston, 1985.

B. Simon, The Statistical Theory of Lattice Gases, Princeton University
Press, 1993.

F. Strocchi, An Introduction to the Mathematical Structure of Quantum
Mechanics: A Short Course for Mathematicians, Lecture Notes, Scuola
Normale Superiore, Pisa (Italy), World Scientific, Singapore, 2005.

K. Fredenhagen, K. Rehren, and E. Seiler, Quantum field theory: where
we are. Lecture Notes in Physics 721 (2007), 61–87.
Internet: http://arxiv.org/hep-th/0603155

For the mathematical theory, we refer to:

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, PWN, Warsaw, 1968.

K. Maurin, Methods of Hilbert Spaces, PWN, Warsaw, 1972.

V. Sunder, An Invitation to von Neumann Algebras, Springer, New York,
1987.

J. Diximier, Von Neumann Algebras, North Holland, Amsterdam, 1981.
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P. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Al-
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cations, Springer, Berlin, 1970.

M. Takesaki, Theory of Operator Algebras, Vols. 1–3, Springer, New York,
1979.

M. Karoubi, K-Theory: An Introduction, Springer, Berlin, 1978.

For applications to noncommutative geometry, we recommend:

J. Várilly, Lectures on Noncommutative Geometry, European Mathemat-
ical Society, 2006.

M. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommuta-
tive Geometry, Birkhäuser, Boston, 2001.

Connes, A., Marcolli, M., Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Providence, Rhode Island, 2008.
Internet: http://www.math.fsu.edu/∼ marcolli/bookjune4.pdf
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There exist close relations between operator algebras and the realization of quantum
groups (i.e., deformations of classical groups and symmetries). We refer to:

M. Majid, A Quantum Groups Primer, Cambridge University Press, 2002.

M. Majid, Foundations of Quantum Group Theory, Cambridge University
Press, 1995.

Applications to quantum information can be found in:

M. Nielsen and I. Chuang, Quantum Computation and Quantum Informa-
tion, Cambridge University Press, 2001.

Supersymmetry

As an introduction to supersymmetry including the Wess–Zumino model, we rec-
ommend:

P. Srivasta, Supersymmetry, Superfields, and Supergravity: An Introduc-
tion, Adam Hilger, Bristol, 1985.

H. Kalka and G. Soff, Supersymmetrie, Teubner-Verlag, Stuttgart, 1997
(in German).

L. Ryder, Quantum Field Theory, Cambridge University Press, 1999.

Shi-Hai Dong, Factorization Method in Quantum Mechanics, Springer,
Dordrecht, 2007 (700 references).

Furthermore, we refer to:

J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Uni-
versity Press, 1991.

G. Juncker, Supersymmetric Methods in Quantum and Statistical Physics,
Springer, Berlin, 1996.

A. Khrennikov, Superanalysis, Kluwer, Dordrecht, 1997.

I. Buchbinder and S. Kuzenko, Ideas and Methods of Supersymmetry and
Supergravity or a Walk Through Superspace, Institute of Physics, Bristol,
1998.

D. Freed, Five Lectures on Supersymmetry, Amer. Math. Soc., Providence,
Rhode Island, 1999.

P. Deligne et al. (Eds.), Lectures on Quantum Field Theory: A Course for
Mathematicians Given at the Institute for Advanced Study in Princeton,
Vols. 1, 2, Amer. Math. Soc., Providence, Rhode Island, 1999.

V. Varadarajan, Supersymmetry for Mathematicians, Courant Lecture
Notes, Amer. Math. Soc., Providence, Rhode Island, 2004.

J. Jost, Geometry and Physics, Springer, Berlin, 2008.

The supersymmetric Standard Model in particle physics can be found in:

S. Weinberg, Quantum Field Theory, Vol. 3, Cambridge University Press,
1995.

Applications of supersymmetry to cosmology:

P. Binétruy, Supersymmetry: Theory, Experiment, and Cosmology, Oxford
University Press, 2006.

Applications of supersymmetry to solid state physics:
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K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University
Press, 1997.

Applications of supersymmetry to the genetic code in biology:

M. Forger and S. Sachse, Lie superalgebras and the multiplet structure of
the genetic code, I. Codon representations, II. Branching rules, J. Math.
Phys. 41 (2000), 5407–5422; 5423–5444.

History of Quantum Mechanics

B. van der Waerden (Ed.), Sources of Quantum Mechanics (1917–1926),
Dover, New York, 1968.

P. Dirac, The Development of Quantum Mechanics, Gordon and Breach,
New York, 1970.

J. Dieudonné, History of Functional Analysis, 1900–1975, North-Holland,
Amsterdam, 1983.

J. Mehra and H. Rechenberg, The Historical Development of Quantum
Mechanics, Vols. 1–6, Springer, New York, 2002.

S. Antoci and D. Liebscher, The third way to quantum mechanics (due to
Feynman) is the forgotten first, Annales de Fondation Louis de Broglie 21
(1996), 349–368.

The Philosophy of Quantum Physics

R. Omnès, The Interpretation of Quantum Mechanics, Princeton Univer-
sity Press, 1994.

W. Heisenberg, Physics and Beyond: Encounters and Conversations, Har-
per and Row, New York, 1970.

P. Dirac, Directions in Physics, Wiley, New York, 1978.

Tian Yu Cao, Conceptual Developments of 20th Century Field Theories,
Cambridge University Press, 1998.

Tian Yu Cao (Ed.), Conceptual Foundations of Quantum Field Theory,
Cambridge University Press, 1999.

R. Penrose, The Road to Reality: A Complete Guide to the Laws of the
Universe, Jonathan Cape, London, 2004.

The Cambridge Dictionary of Philosophy. Edited by R. Audi, Cambridge
University Press, 2005.

Problems

In the first group of problems we want to show how to apply von Neumann’s theory
of self-adjoint (and essentially self-adjoint) operators to quantum mechanics. As
prototypes, we will study the position operator Q, the momentum operator P , and
the Hamiltonian Hfree of a free quantum particle on the real line in Problems 7.5
and 7.15–7.17. Further typical examples can be found in Problem 7.19. Observe
that in Problem 7.5, we will show that
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The basic idea behind the notion of self-adjoint operator is the integration-
by-parts formula and the extension of the classical derivative for functions
to distributions (generalized functions).

The key observation is that the classical integration-by-parts formula for smooth
functions with compact support,

Z

R

ψ(x)ϕ′(x)dx = −
Z

R

ψ′(x)ϕ(x)dx for all ϕ, ψ ∈ D(R), (7.309)

remains valid if the derivatives ϕ′, ψ′ are to be understood in the sense of tempered
distributions and the functions ϕ, ψ, as well as ϕ′, ψ′ are contained in the Hilbert
space L2(R) of square-integrable functions (see Problem 7.3). This can be written
as

Z

R

ψ(x)ϕ′(x)dx = −
Z

R

ψ′(x)ϕ(x)dx for all ϕ, ψ ∈ W 1
2 (R). (7.310)

Let us introduce the two operators Apreϕ := ϕ′ for all ϕ ∈ S(R) and

Aϕ := ϕ′ for all ϕ ∈ W 1
2 (R).

Using the inner product 〈f |g〉 :=
R

R
f(x)†g(x)dx on the Hilbert space L2(R), we

get

〈ψ|Apreϕ〉 = −〈Aψ|ϕ〉 for all ϕ ∈ S(R), ψ ∈ W 1
2 (R). (7.311)

Setting Ppre := −i�Apre and P := −i�A, formula (7.311) implies

(i) 〈ψ|Ppreϕ〉 = 〈Ppreψ|ϕ〉 for all ϕ, ψ ∈ S(R),
(ii) 〈ψ|Ppreϕ〉 = 〈Pψ|ϕ〉 for all ϕ ∈ S(R), ψ ∈ W 1

2 (R), and
(iii) 〈ψ|Pϕ〉 = 〈Pψ|ϕ〉 for all ϕ, ψ ∈ W 1

2 (R).

The three formulas (i)–(iii) display the basic ideas of von Neumann’s functional-
analytic theory for self-adjoint operators. We will show in Problem 7.5 that the
formulas (i)–(iii) imply that P ∗

pre = P = P ∗. In the general case, let us consider the
linear operator

A : D(A) → X (7.312)

whose domain of definition D(A) is a linear dense subspace of the complex Hilbert
space X. The linearity of A means that

A(αϕ + βψ) = αAϕ + βAψ for all ϕ, ψ ∈ D(A), α, β ∈ C.

The density of the set D(A) in the Hilbert space X means that, for any element
ϕ ∈ X, there exists a sequence (ϕn) in D(A) such that limn→∞ ϕn = ϕ in X.
Suppose that we are given two operators B : D(B) → X and C : D(C) → X,
where D(B) and D(C) are subsets of the space X.

• We write B = C iff D(B) = D(C) and Aϕ = Bϕ for all ϕ ∈ D(A).
• We write B ⊆ C iff the operator B : D(B) → X is an extension of the operator

C, that is, we have D(A) ⊆ D(B) ⊆ X and Aϕ = Bϕ for all ϕ ∈ D(A).
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7.1 The smoothing technique (Friedrichs’ mollification). Let ϕ ∈ L2(R). For any
positive real number ε > 0, we define

ϕε(x) :=
1

ε

Z

R

K
“x − y

ε

”

ϕ(y)dy, x ∈ R.

Here, we choose K(x) := c · e−(1−x2)−1
if |x| < 1 and K(x) := 0 if |x| ≥ 1. The

positive constant c is chosen in such a way that
R

R
K(x)dx = 1. Prove that, for

all ε > 0, the following hold:
(i) The smooth function ϕε is contained in the Hilbert space L2(R).
(ii) limε→+0

R

R
|ϕε(x) − ϕ(x)|2dx = 0.

Hint: We refer to Zeidler (1995a), p. 186 (see the references on page 1049).
7.2 The Sobolev space W 1

2 (R). By definition, the function ϕ : R → C is contained
in the space W 1

2 (R) iff ϕ ∈ L2(R), and the derivative ϕ′ (in the sense of
distributions) is also contained in L2(R). This means that

Z

R

ϕ′(x)χ(x)dx = −
Z

ϕ(x)χ′(x)dx

for all test functions χ ∈ D(R). Prove the following:
(i) The Sobolev space W 1

2 (R) is a Hilbert space equipped with the inner prod-
uct

〈χ|ϕ〉1,2 := 〈χ|ϕ〉 + 〈χ′|ϕ′〉 =

Z

R

χ(x)†ϕ(x)dx +

Z

R

χ′(x)†ϕ′(x)dx

for all functions χ, ϕ ∈ W 1
2 (R).197

(ii) The sets D(R) and S(R) are dense in W 1
2 (R).

(iii) The sets D(R) and S(R) are proper linear subspaces of the Sobolev space
W 1

2 (R).
(iv) The function ϕ : R → C is contained in W 1

2 (R) iff ϕ ∈ L2(R) and the
Fourier transform ϕ̂ satisfies the condition198

Z

R

`

|ϕ̂(p)|2 + |pϕ̂(p)|2
´

dp < ∞.

(v) If ϕ, χ ∈ W 1
2 (R), then 〈χ|ϕ〉1,2 =

R

R
χ̂(p)†ϕ̂(p) + p2χ̂(p)†ϕ̂(p) dp.

Hint: Use Problem 7.1. Concerning (iii), note that the function ϕ(x) := |x|e−x2

has a derivative on the pointed set R \ {0} which is square integrable. Hence
ϕ ∈ W 1

2 (R), but ϕ /∈ S(R). The proofs can be found in Zeidler (1986), Vol.
IIA, Chap. 21 (see the references on page 1049), together with much additional
material.

7.3 Integration by parts. Prove that the generalized integration-by-parts formula
(7.310) holds true.
Solution: Let ϕ, ψ ∈ W 1

2 (R). Since D(R) is dense in the Hilbert space W 1
2 (R),

there exist sequences (ϕn) and (ψn) in D(R) such that ϕn → ϕ and ψn → ψ
in W 1

2 (R) as n → ∞. This means that

197 Two functions ϕ and ψ are considered as the same element of the Hilbert space
W 1

2 (R) iff ϕ(x) = ψ(x) and ϕ′(x) = ψ′(x) for all x ∈ R, up to a set of Lebesgue
measure zero.

198 Recall that the Fourier transform of the derivative ϕ′ is the product function
p �→ ipϕ̂(p).
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ϕn → ϕ, ϕ′
n → ϕ′, ψn → ψ, ψ′

n → ψ′ in L2(R) as n → ∞.

Letting n → ∞, it follows from
Z

R

ψn(x)ϕ′
n(x)dx = −

Z

R

ψ′
n(x)ϕn(x)dx

that
R

R
ψ(x)ϕ′(x)dx = −

R

R
ψ′(x)ϕ(x)dx.

7.4 The adjoint operator. The linear operator A† : D(A) → X is called the formally
adjoint operator to the linear operator A from (7.312) iff

〈ψ|Aϕ〉 = 〈A†ψ|ϕ〉 for all ϕ, ψ ∈ D(A).

The operator A : D(A) → X is called formally self-adjoint (or symmetric) iff

〈ψ|Aϕ〉 = 〈Aψ|ϕ〉 for all ϕ, ψ ∈ D(A).

The more sophisticated definition of the adjoint operator A∗ : D(A∗) → X is
based on the formula

〈ψ|Aϕ〉 = 〈A∗ψ|ϕ〉 for all ϕ ∈ D(A), ψ ∈ D(A∗). (7.313)

More precisely, we first define the set D(A∗). The element ψ is contained in
D(A∗) iff there exists an element χ in X such that

〈ψ|Aϕ〉 = 〈χ|ϕ〉 for all ϕ ∈ D(A).

We then define A∗ψ := χ. This yields (7.313). The following two definitions
are basic for quantum mechanics. Let A : D(A) → X be a formally self-adjoint
operator of the form (7.312).
• The operator A is called self-adjoint iff A = A∗.
• The operator A is called essentially self-adjoint iff it has precisely one self-

adjoint extension.
Show that the following hold:
(i) Both the formally adjoint operator A† and the adjoint operator A∗ are

uniquely determined by the given operator A.
(ii) The adjoint operator A∗ is linear.
(iii) If the formally adjoint operator A† exists, then A† ⊆ A∗, that is, the

operator A∗ is an extension of A†.
(iv) The operator A is formally self-adjoint iff A ⊆ A∗.
Hint: We refer to Zeidler (1995a), Sect. 5.2 (see the references on page 1049).

7.5 The prototype of a self-adjoint differential operator. Define

Ppreϕ := −i�ϕ′ for all ϕ ∈ S(R),

and
Pϕ := −i�ϕ′ for all ϕ ∈ W 1

2 (R).

In the latter equation, the derivative is to be understood in the sense of tem-
pered distributions. Note that ϕ ∈ W 1

2 (R) implies Pϕ ∈ L2(R). Prove the
following:
(i) The operator Ppre : S(R) → L2(R) is formally self-adjoint.
(ii) The adjoint operator P ∗

pre coincides with P .

(iii) The operator P : W 1
2 (R) → L2(R) is self-adjoint.

(iv) Ppre ⊆ P ∗∗
pre = P ∗

pre = P.
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(v) The closure P pre of Ppre coincides with P ∗∗
pre (see Problem 7.9).

Solution: Set � := 1. By Problem 7.3,
Z

R

ψ†(−iϕ′)dx =

Z

R

(−iψ′)†ϕdx for all ϕ, ψ ∈ W 1
2 (R). (7.314)

Ad (i). By (7.314), 〈ψ|Ppreϕ〉 = 〈Ppreψ|ϕ〉 for all ϕ, ψ ∈ S(R).
Ad (ii). By definition of the adjoint operator P ∗

pre, we have χ = P ∗
preψ iff

ψ, χ ∈ L2(R) and

〈ψ|Ppreϕ〉 = 〈χ|ϕ〉 for all ϕ ∈ S(R).

Equivalently,

Z

R

ψ†(−iϕ′)dx =

Z

R

χ†ϕdx for all ϕ ∈ S(R).

Passing over to conjugate complex values and setting � := −iϕ†, we get
Z

R

ψ(−�′)dx =

Z

R

(iχ)�dx for all � ∈ S(R).

This means that d
dx

ψ = iχ, in the sense of tempered distributions. Hence

ψ ∈ W 1
2 (R), and χ = −i d

dx
ψ. Therefore, χ = Pψ.

Ad (iii). By (7.314), 〈ψ|Pϕ〉 = 〈Pψ|ϕ〉 for all ϕ, ψ ∈ W 1
2 (R). Hence the operator

P is formally self-adjoint. Suppose that, for fixed ψ, χ ∈ L2(R), we have

〈ψ|Pϕ〉 = 〈χ|ϕ〉 for all ϕ ∈ W 1
2 (R).

The same argument as in (ii) above shows that Pψ = χ. Hence P ∗ψ = Pψ for
all ψ ∈ W 1

2 (R).
Ad (iv). By definition, Ppre ⊆ P. By (ii), (iii), we get P ∗

pre = P and P ∗ = P.
Ad (v). Let (ϕn) be a sequence in D(Ppre) with

lim
n→∞

ϕn = ϕ, lim
n→∞

Ppreϕn = χ. (7.315)

Then P preψ = χ. Letting n → ∞, it follows from

〈�|Ppreϕn〉 = 〈P�|ϕn〉 for all � ∈ S(R)

that 〈�|χ〉 = 〈P�|ϕ〉 for all � ∈ S(R). Hence χ = Pϕ.
Conversely, if χ = Pϕ, then there exists a sequence (ϕn) in S(R) with (7.315),

by Problem 7.2(ii). Summarizing, Pϕ = Pϕ for all ϕ ∈ W 1
2 (R).

7.6 Closed operators. The subset

graph(A) := {(ϕ, Aϕ) : ϕ ∈ D(A)}

of the product space X ×X is called the graph of the operator A from (7.312).
The operator A is defined to be closed iff the set graph(A) is closed in X ×X.
This means that if there exists a sequence (ϕn) in D(A) with the convergence
property

lim
n→∞

ϕn = ϕ and lim
n→∞

Aϕn = ψ,
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then ϕ ∈ D(A) and Aϕ = ψ. This generalizes the notion of continuity.199 Show
that the adjoint operator A∗ : D(A) → X from Problem 7.4 is closed.
Solution: Let ϕn ∈ D(A∗) for all n, and let

lim
n→∞

ϕn = ϕ and lim
n→∞

A∗ϕn = ψ.

Then 〈A∗ϕn|χ〉 = 〈ϕn|Aχ〉. Letting n → ∞, we get

〈ψ|χ〉 = 〈ϕ|Aχ〉 for all χ ∈ D(A).

Hence ϕ ∈ D(A∗) and ψ = A∗ϕ.
7.7 The crucial symmetry criterion for self-adjoint operators. Prove that the linear,

densely defined operator A : D(A) → X on the complex Hilbert space X is
self-adjoint iff the following two conditions are satisfied:
(i) 〈ψ|Aϕ〉 = 〈Aψ|ϕ〉 for all ϕ, ψ ∈ D(A).
(ii) If 〈ψ|Aϕ〉 = 〈χ|ϕ〉 for fixed ψ, χ ∈ X and all ϕ ∈ D(A), then ψ ∈ D(A).
Solution: (I) ⇒: Assume that A is self-adjoint. Then A = A∗. This implies (i).
If 〈ψ|Aϕ〉 = 〈χ|ϕ〉 for all ϕ ∈ D(A), then ψ ∈ D(A∗). Hence ψ ∈ D(A).
(II) ⇐: Assume that (i) and (ii) hold. By (i), A ⊆ A∗. In order to show A∗ ⊆ A,
let ψ ∈ D(A∗). Then

〈ψ|Aϕ〉 = 〈A∗ψ|ϕ〉 for all ϕ ∈ D(A).

By (ii), ψ ∈ D(A). It follows from (i) that 〈A∗ψ|ϕ〉 = 〈Aψ|ϕ〉. Hence

〈A∗ψ − Aψ|ϕ〉 = 0 for all ϕ ∈ D(A).

Since D(A) is dense in X, we get A∗ψ = Aψ. �

In the following problems we want to show that

The properties of self-adjointness and essential self-adjointness are
closely related to natural extension properties of formally self-adjoint
operators A based on the inclusions A ⊆ A ⊆ A∗, where A denotes the
closure of A. In addition, A = A∗∗.

7.8 Maximal extension and the adjoint operator. Let A : D(A) → X be a formally
self-adjoint operator of the form (7.312). Show the following:
(i) There exists a maximal linear extension B : D(B) → X of A with

〈ψ|Aϕ〉 = 〈Bψ|ϕ〉 for all ϕ ∈ D(A), ψ ∈ D(B).

This maximal extension B is equal to the adjoint operator A∗.
(ii) The operator A is self-adjoint iff the maximal extension B coincides with

A, that is, B = A.
Hint: Convince yourself that this is merely a reformulation of the basic defini-
tions.

7.9 Minimal extension and the closure. Let A : D(A) → X be a formally self-
adjoint operator of the form (7.312). Show that the operator A can be mini-
mally extended to a linear, closed, formally self-adjoint operator. This operator
is denoted by A : D(A) → X, and it is called the closure of A.
Hint: Let Dcl be the set of all ϕ ∈ X for which a sequence (ϕn) exists in D(A)
such that

199 Banach’s closed graph theorem tells us the crucial fact that a linear closed opera-
tor A : X → X defined on the total Hilbert space X is continuous. However, the
self-adjoint Hamiltonian operators arising in quantum mechanics are not defined
on the total Hilbert space; as a rule, they are not continuous, but they are closed.
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• limn→∞ ϕn = ϕ and
• (Aϕn) is convergent, that is, limn→∞ Aϕn = ψ.
Letting n → ∞, it follows from 〈χ|Aϕn〉 = 〈Aχ|ϕn〉 that

〈χ|ψ〉 = 〈Aχ|ϕ〉 for all χ ∈ D(A).

Since D(A) is dense in X, the element ψ of X is uniquely determined by ϕ.

Now we set Aϕ := ψ and D(A) := Dcl. Since

〈χ|Aϕ〉 = 〈Aχ|ϕ〉 for all χ ∈ D(A), ϕ ∈ D(A), (7.316)

we get A ⊆ A ⊆ A∗. Let � ∈ D(A). Then there exists a sequence (�n) in
D(A) such that limn→∞ χn = �. Considering (7.316) with χ := �n and letting
n → ∞, we obtain

〈�|Aϕ〉 = 〈A�|ϕ〉 for all �, ϕ ∈ D(A).

Thus, the operator A is formally self-adjoint. Finally, it remains to show that
the operator A is closed (see H. Triebel, Higher Analysis, Sect. 17, Barth,
Leipzig, 1989).

7.10 Properties of the closure. Let A : D(A) → X and B : D(B) → X be formally
self-adjoint operators of the form (7.312) on page 681. Show the following:

(i) A ⊆ B implies A ⊆ B and B∗ ⊆ A∗.

(ii) A ⊆ A ⊆ A∗.

(iii) A = A∗∗ and (A)∗ = A∗.

(iii) The operator A is essentially self-adjoint iff the closure A is self-adjoint.
Hint: We refer to Zeidler (1995a), p. 415ff (see the references on page 1049).

7.11 General properties of self-adjoint operators. For the formally self-adjoint op-
erator A of the form (7.312), the following statements are equivalent:
(i) The operator A is self-adjoint.
(ii) All the non-real numbers z belong to the resolvent set �(A).
(iv) im(±iI − A) = X.
(iv) The operator A is closed and ker(±iI − A∗) = {0}.
(v) The operator A is essentially self-adjoint and closed.
Hint: See Zeidler (1995a), p. 416.

7.12 General properties of essentially self-adjoint operators. For the formally self-
adjoint operator operator A of the form (7.312), the following statements are
equivalent:
(i) The operator A is essentially self-adjoint.

(ii) The closure A is self-adjoint.
(iv) The two sets im(±iI − A) are dense in X.
(iii) ker(±iI − A∗) = {0}.
Hint: See Zeidler (1995a), p. 424.

7.13 Further properties of essentially self-adjoint operators. Let A : D(A) → X
be a linear, formally self-adjoint, and densely defined operator on the complex
Hilbert space X. Assume that the operator A is essentially self-adjoint, and let
B : D(B) → X be the uniquely determined self-adjoint extension of A. Prove
that

A∗ = A = A∗∗ = B. (7.317)

Solution: By Problem 7.10, B = A. Moreover, A = A∗∗ and A∗ = (A)∗ = A.
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7.14 Unitary invariance. The linear operator A : D(A) → X is said to be unitarily
equivalent to the linear operator B : D(B) → X iff there exists a unitary
operator U : X → Y from the complex Hilbert space X onto the complex
Hilbert space Y such that the diagram

D(A)

U

��

A �� X

U

��
D(B)

B �� Y

is commutative. This means that D(B) = UD(A) and B = UAU−1. Show
that the following notions are invariant under this transformation: formally
self-adjoint, self-adjoint, essentially self-adjoint, and closed.
Hint: Use the corresponding definitions.

7.15 The position operator on the real line. Set

D(Q) := {ϕ ∈ L2(R) :

Z

R

|xϕ(x)|2dx < ∞}.

Fix x ∈ R. Define (Qpreϕ)(x) := xϕ(x) for all ϕ ∈ S(R), and (Qϕ)(x) := xϕ(x)
for all ϕ ∈ D(Q). Prove the following:
(i) The operator Qpre : S(R) → L2(R) is formally self-adjoint.
(ii) The operator Q : D(Q) → L2(R) is self-adjoint.
(iii) The operator Qpre : S(R) → L2(R) is essentially self-adjoint, but not

self-adjoint.
(iv) Q∗

pre = Qpre = Q∗∗
pre = Q.

Solution: Ad (i). For all ϕ, ψ ∈ S(R),
Z

R

(xψ(x))†ϕ(x)dx =

Z

ψ(x)†xϕ(x)dx.

Ad(ii), (iii). For given function f ∈ L2(R), the equation

± iϕ − Qϕ = f, ϕ ∈ D(Q) (7.318)

has the unique solution ϕ(x) := f(x)
±i−x

for all x ∈ R. In fact, |ϕ(x)| ≤ const|f(x)|
for all x ∈ R. This implies ϕ ∈ L2(R). Hence ϕ ∈ D(Q). Thus, we get the key
relation im(±iI − Q) = L2(R), that is, Q is self-adjoint.
In particular, if f ∈ S(R), then the solution of equation (7.318) is contained in
S(R). Since the set S(R) is dense in L2(R), the sets im(±I − Qpre) are dense
in L2(R). Therefore, the operator Qpre is essentially self-adjoint.
Finally, note that the set D(Qpre) = S(R) differs from D(Q). For example,

choose ψ(x) := |x|e−x2
. Then ψ ∈ D(Q), but ψ /∈ S(R).

Ad (iv). Use Problem 7.13.
7.16 The momentum operator on the real line. As in Problem 7.5, define

Ppreϕ := −i�ϕ′ for all ϕ ∈ S(R),

and Pϕ := −i�ϕ′ for all ϕ ∈ W 1
2 (R). Use the Weyl equation

±iϕ − Pϕ = f, ϕ ∈ S(R) (7.319)

in order to prove the following:
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(i) The operator Ppre : S(R) → L2(R) is formally self-adjoint.
(ii) The operator P : W 1

2 (R) → L2(R) is self-adjoint.
(iii) The operator Ppre : S(R) → L2(R) is essentially self-adjoint, but not

self-adjoint.
(iv) P ∗

pre = P pre = P ∗∗
pre = P.

Solution: Ad (i). See Problem 7.5.
Ad (ii), (iii). For given f ∈ S(R), the equation (7.319) has a unique solution
ϕ ∈ S(R). In fact, Fourier transformation yields

±iϕ̂(p) − �pϕ̂(p) = f̂(p), p ∈ R.

This yields ϕ̂(p) = f̂(p)
±i−�p

which is contained in S(R). Then the inverse Fourier

transform yields the desired solution ϕ of (7.319). Since the set S(R) is dense
in L2(R), the image set im(±I − Ppre) is dense in L2(R). Consequently, the
operator Ppre : S(R) → L2(R) is essentially self-adjoint. Thus, it has a unique
self-adjoint extension.
Using the extended Fourier transform F : L2(R) → L2(R) together with
Problem 7.2(iv), the same argument as above shows that, for given function
f ∈ L2(R), the equation

±iϕ − Pϕ = f, ϕ ∈ W 1
2 (R)

has a (unique) solution ϕ. Hence im(±iI − P ) = L2(R). Consequently, the
operator P : W 1

2 (R) → L2(R) is self-adjoint. Furthermore, the operator P is
the unique self-adjoint extension of the operator Ppre. Since S(R) �= W 1

2 (R),
the operator Ppre differs from P.
Ad (iv). Use Problem 7.13.
Historical remarks. The importance of equations of the type (7.319) for the
study of the spectral properties of ordinary differential equations was discovered
by Weyl in 1910 and developed by von Neumann in his 1929 theory of deficiency
indices.
• H. Weyl, On ordinary differential equations with singularities, Math. Ann.

68 (1910), 220–269 (in German).
• J. von Neumann, General spectral theory of Hermitean operators, Math.

Ann. 102 (1929), 49–131 (in German).
• K. Kodaira, The eigenvalue problem for ordinary differential equations of

the second order and Heisenberg’s theory of S-matrices. Amer. J. Math. 71
(1949), 921–945.

• K. Jörgens and F. Rellich, Eigenvalue problems for ordinary differential equa-
tions, Springer, Berlin, 1976 (in German).

The Weyl–Kodaira theory will be studied in Vol. III, together with interesting
physical applications.

7.17 The Hamiltonian of the free quantum particle on the real line. Define

Hpreϕ := − �
2

2m
ϕ′′ for all ϕ ∈ S(R),

and

Hfreeϕ := − �
2

2m
ϕ′′ for all ϕ ∈ W 2

2 (R).

In the latter equation, the derivatives are to be understood in the sense of tem-
pered distributions. If ϕ ∈ W 2

2 (R), then Hfreeϕ ∈ L2(R). Prove the following:
(i) The operator Hpre : S(R) → L2(R) is formally self-adjoint.
(ii) The operator Hfree : W 2

2 (R) → L2(R) is self-adjoint.



Problems 689

(iii) Hpre = H∗
pre = Hfree.

(iv) The operator Hpre is essentially self-adjoint, but not self-adjoint.
Hint: Apply integration by parts twice, and use analogous arguments as in
Problem 7.7.

7.18 Deficiency indices and von Neumann’s extension theorem for self-adjoint op-
erators. Let A : D(A) → X be a linear, formally self-adjoint, densely defined,
and closed operator on the complex Hilbert space X. The numbers

d± := dim (±iI − A)⊥

are called the deficiency indices of the operator A.200 Prove the following:
(i) The operator A has a self-adjoint extension iff d+ = d−.
(ii) The operator A is self-adjoint iff d+ = d− = 0.
Hint: Use the Cayley transform in order to reduce this to the extension problem
for isometric operators (see Problems 7.22 and 7.23).

7.19 Formally self-adjoint operators which have no self-adjoint extension or in-
finitely many self-adjoint extensions. Consider the operator

Aϕ := −i�
dϕ

dx
for all ϕ ∈ D(A)

where D(A) is a linear dense subspace of the complex Hilbert space X. We will
choose X := L2(0,∞) or X := L2(0, 1). We want to show that the properties
of the operator A critically depend on the choice of the domain of definition
D(A). In turn, this depends on the choice of boundary conditions. Show that
the following hold:
(i) Choose D(A) := D(0,∞) and X := L2(0,∞). 201 Then the operator A is

formally self-adjoint, but it cannot be extended to a self-adjoint operator.
(ii) Fix the complex number α with |α| = 1 and α �= 1. Choose202

D(A) := {ϕ ∈ C1[0, 1] : ϕ(0) = αϕ(1)}

and X = L2(0, 1). Then the operator A is essentially self-adjoint.
(iii) Choose D(A) := {ϕ ∈ C1[0, 1] : ϕ(0) = ϕ(1) = 0} and X := L2(0, 1).

Then the operator A is formally self-adjoint, but its closure A is not self-
adjoint. However, the operator has an infinite number of self-adjoint ex-
tensions given by the operators from (ii).

Hint: Ad (i). Set � := 1. Integration by parts yields

〈χ|Aϕ〉 =

Z ∞

0

χ†(−iϕ′)dx =

Z ∞

0

(−iχ′)†ϕdx = 〈Aχ|ϕ〉

for all χ, ϕ ∈ D(0,∞). Thus, the operator A is formally self-adjoint. Now fix
the non-real complex number z and study the equation A − zI = f , that is

− iϕ′ − zϕ = f, ϕ ∈ D(0,∞). (7.320)

200 If L is a linear subspace of X, then the orthogonal complement L⊥ consists of
all the elements ϕ of X which are orthogonal to L.

201 Recall that ϕ ∈ D(0,∞) iff the function ϕ :]0,∞[→ C is smooth with compact
support (i.e., it vanishes outside some interval [a, b] with 0 < a < b < ∞). Then
the function ϕ satisfies the boundary condition ϕ(0) = ϕ(+∞) = 0.

202 The space Ck[0, 1], k = 1, 2, . . . consists of all continuous functions ϕ : [0, 1] → C

which have continuous derivatives on the open interval ]0, 1[ up to order k, and
all of these derivatives can be continuously extended to the closed interval [0, 1].
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We are given f ∈ L2(0,∞). If ϕ is a solution of (7.320), then

e−izxf(x) = −i
d

dx

“

ϕ(x)e−izx
”

.

Integration by parts tells us that
Z ∞

0

e−izxf(x)dx = 0. (7.321)

Choosing z := −i, we get e−izx = e−x. Then condition (7.321) is satisfied for
all f ∈ L2(0,∞). In contrast to this, if z := i, then e−izx = ex, and condition
(7.321) is not valid for all f ∈ L2(0,∞). Use this observation in order to show
that the deficiency indices of A are given by d− = 0 and d+ �= 0. By von
Neumann’s deficiency-index criterion (see Problem 7.18), the operator A has
no self-adjoint extension.
For the complete proof of (i)–(iii), see P. Lax, Functional Analysis, Chap. 33,
Wiley, New York, 2002.

7.20 Continuity and boundedness. Show that, for the linear operator A : X → X on
the (real or complex) Hilbert space X, the following statements are equivalent:
(i) The operator A is continuous, that is, for any fixed element ϕ0 ∈ X and

any number ε > 0, there exists a number δ(ε, ϕ0) > 0 such that

||ϕ − ϕ0|| < δ(ε, ϕ0) implies ||Aϕ − Aϕ0|| < ε.

(ii) The operator is sequentially continuous, that is, limn→∞ ϕn = ϕ implies
limn→∞ Aϕn = Aϕ.

(iii) The operator A is bounded, that is, ||A|| := sup||ϕ||≤1 ||Aϕ|| < ∞.

Hint: We refer to Zeidler (1995a), Sect. 1.9 (see the references on page 1049).
7.21 Extension of a linear, densely defined, bounded operator. Let A : D(A) → Y

be a linear operator, where D(A) is a linear dense subspace of the complex
(resp. real) Hilbert space X, and Y is also a complex (resp. real) Hilbert space.
Suppose that

||Aψ|| ≤ const ||ψ|| for all ψ ∈ D(A).

Show that the operator A can be uniquely extended to a linear bounded oper-
ator A : X → Y. This statement remains true if X and Y are complex (resp.
real) Banach spaces.
Hint: Let ψ ∈ X. Choose a sequence (ψn) in D(A) with ψ = limn→∞ ψn.
Using the Cauchy criterion, show that the sequence (Aψn) is convergent. Set
Aψ := limn→∞ Aψn. Finally, show that Aψ is independent of the choice of the
sequence (ψn). We refer to Zeidler (1995a), Sect. 3.6 (see the references on page
1049).

7.22 Extension of isometric operators. Let A : D(A) → X be a linear isometric
operator on the linear subspace D(A) of the complex Hilbert space X, that
is, 〈Aψ|Aϕ〉 = 〈ψ|ϕ〉 for all ϕ, ψ ∈ D(A). Show that the operator A can be

extended to a unitary operator U : X → X iff dim D(A)⊥ = dim im(A)⊥.
Hint: (I) Assume first that D(A) is a closed linear subspace of the separable
Hilbert space X. Let dim D(A)⊥ = dim im(A)⊥. Set

Uϕj := ψj for all j,

where ϕ1, ϕ2, . . . (resp. ψ1, ψ2, . . . ) is an orthonormal basis in D(A)⊥ (resp.

im(A)⊥).
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(II) If D(A) is not closed, then consider the closure Dcl of D(A). This is a
closed linear subspace of X. By Problem 7.21, the operator A can be uniquely
extended to a linear isometric operator B : Dcl → X. Now apply argument (I)
to the extension B.
(III) If the Hilbert space X is not separable, then replace ϕ1, ϕ2, . . . (resp.
ψ1, ψ2, . . . ) by a generalized orthonormal basis, by using the Zorn lemma. As
in Problem 7.19, see Lax (2002), Sect. 6.4.

7.23 The Cayley transform. The classical Möbius transformation

f(z) :=
z − i

z + i
, z ∈ R

generates a conformal map from the real line onto the unit circle. Generalizing
this, we obtain the Cayley transformation

CA := (A − iI)(A + iI)−1

which was used for matrices A by Cayley.203 In the late 1920s, von Neumann
generalized this to operators in Hilbert spaces in order to solve the extension
problem for self-adjoint operators (see Problem 7.18). Let A : D(A) → X
be a linear, formally self-adjoint operator on the linear subspace D(A) of the
complex Hilbert space X. Show the following:
(i) dom(CA) = im(A + iI) and im(CA) = im(A − iI).
(ii) The operator CA is isometric.
(iii) CA is unitary on X iff A is self-adjoint.
(iv) CA is closed iff A is closed.
(v) Let B : D(B) → X be linear and formally self-adjoint. Then, A ⊆ B iff

CA ⊆ CB .
(vi) If A is closed, then dom(CA) and im(CA) are closed linear subspaces of

the Hilbert space X.
Hint: See F. Riesz and B. Nagy, Functional Analysis, Sect. 123, Frederyck
Ungar, New York, 1978.

7.24 Polar decomposition. Each complex number z allows the polar decomposition
z = ur with r := |z| and u = eiϕ. Here, |u| = 1. We want to generalize this to
operators. Let A : D(A) → X be a linear (resp. antilinear), densely defined,
closed operator on the complex Hilbert space X (e.g., a linear continuous op-
erator A : X → X.) Show the following:
(i) There exists a factorization

A = UR

where R : D(R) → X is a linear self-adjoint operator with D(R) = D(A), and
〈ψ|Rψ〉 ≥ 0 for all ψ ∈ D(R). In addition, ker(R) = ker(A). Moreover, the
operator U : X → X is linear (resp. antilinear) and the restriction

U : ker(A)⊥ → cl(im(A))

is unitary (resp. antiunitary), whereas ker(U) = ker(A). Explicitly, R =
√

A∗A.
The operator R is also called the absolute value of A (denoted by |A|). In
particular, if the operator A : X → X is linear (resp. antilinear), continuous,
and bijective, then the operator U : X → X is unitary (resp. antiunitary).
(ii) The operators R and U are uniquely determined by the properties formu-
lated in (i).

203 Möbius (1790–1868), Cayley (1821–1895).
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(iii) If the linear operator A : X → X is continuous and normal, that is,
AA∗ = A∗A, then the operator R : X → X is linear, continuous, and self-
adjoint, and the operator U : X → X is unitary. In addition, UR = RU.
Hint: See Reed and Simon, Methods of Modern Mathematical Physics, Vol.
1, Sect. VIII.9, Academic Press, as well as F. Riesz and B. Nagy, Functional
Analysis, Sect. 110, Frederyck Ungar, New York, 1978.

7.25 The theorem of Rolle on the zeros of functions. Show the following for smooth
functions f : R → R:204

(i) If f(a) = f(c) = 0 with a < c, then there exists a number b with a < b < c
such that f ′(b) = 0.

(ii) If f(c) = 0 and limx→+∞ f(x) = 0, then there exists a number d > c such
that f ′(d) = 0.

(iii) Let n ≥ 1. If the function f has at least n zeros on the compact interval
J , then the derivative f ′ has at least n − 1 zeros on J. If, in addition, the
function f goes to zero as x → +∞ and x → −∞, then f ′ has at least
n + 1 zeros on R.

Solution: Ad (i). By the classical mean theorem in calculus,

f(c) − f(a) = f ′(b)(c − a) for some b ∈]a, c[.

Ad (ii). Since f(x) =
R x

c
f ′(y)dy, we get

Z ∞

c

f ′(y)dy = lim
x→+∞

f(x) = 0.

Suppose that the function f ′ has no zeros on the interval ]c,∞[. Then, f ′ has
constant sign on this interval, by the Bolzano theorem. Hence the integral of
f ′ over [c,∞[ does not vanish, a contradiction.
Ad (iii). For n = 1 the statement is trivial. Let n ≥ 2. Suppose that f(xj) = 0
for j = 1, 2, ..., n with

x1 < x2 < ... < xn.

By (ii), there exist numbers y1, y2, ... with

x1 < y1 < x2 < ... < xn−1 < yn−1 < xn

such that f ′(yk) = 0 for k = 1, ..., n − 1. In addition, if f(x) → 0 as x → +∞,
then there exists a number yn > xn such that f ′(yn) = 0, by (ii). Similarly, it
follows from f(x) → 0 as x → −∞ that there exists a number y−1 < x1 such
that f ′(y−1) = 0.

7.26 The zeros of the Hermite polynomials. Show that, for n = 0, 1, 2, ..., the Her-
mite polynomial Hn of order n has precisely n zeros.205

Solution: Set Hn(x) := (−1)ne−x2
Hn(x). By (7.7) on page 436,

Hn(x) =
dne−x2

dxn
, n = 0, 1, 2, ...

Note that Hn is a polynomial of degree n. Thus, the maximal number of real
zeros of Hn is equal to n. Moreover, Hn(x) → 0 as x → ±∞ for n = 0, 1, 2, , ...
Using the recursive formula

204 The French mathematician Michel Rolle (1652–1719) investigated the zeros of
polynomials in his 1690 treatise Traité d’algèbre.

205 This implies that the n zeros of Hn are simple.
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Hn+1(x) = H′
n(x), n = 0, 1, 2, ...

and Problem 7.25, we proceed by induction. The function H0(x) = 1 has no
zeros. The polynomial H1 of first order has precisely one zero. Now suppose
that the polynomial Hn has n real zeros. Then, the function Hn has also n
zeros. By Problem 7.25(iii), Hn+1 has n+1 zeros. In turn, Hn+1 has n+1 real
zeros.

7.27 The normal product : Qn :. Fix x0 := 1 as on page 436. Let m, n = 0, 1, 2, . . .
Define

Pn(x) :=

[n/2]
X

k=0

(−1)kcn,kxn−2k

where cn,k := n!/k!(n − 2k)!2k. Here, [n/2] denotes the largest integer j with
j ≤ n/2. Using the normal product : Qn : introduced on page 438, prove the
following:
(i) Hn(x) = 2n/2Pn(

√
2 x).

(ii)
R

R
Hn(x)Hm(x)e−x2

dx = 2nn!
√

π δnm.

(iii) xn =
P[n/2]

k=0 cn,kPn−2k(x).

(iv) : Qn := 2−nHn(x).
Hint: See J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics,
Sect. 1.5, Springer, New York, 1981.

7.28 The modified Moyal star product. For all functions f, g ∈ C∞(R2), define the
modified Moyal product

f � g := fe∂′
a∂

a† g =

∞
X

m,n=0

1

m!n!
(∂m

a f)(∂n
a†g).

Moreover, set π0 := e−aa†
along with

πn :=
1

n!
(a†)n � π0 � an, n = 0, 1, 2, ...

Recall that H := �ωaa† by page 593. Show that the following hold:
(i) a† � a = aa†, a � a† = aa† + 1.
(ii) πn = π0(a

†)nan/n!, n = 1, 2, . . .
(iii) a � π0 = 0.
(iv) H � πn = n�ωπn, n = 0, 1, 2, . . .
(v) The generalized Schrödinger equation

i�Ft(a, a†, t) = H � F (a, a†, t), t ∈ R, a ∈ C

is equivalent to the equation i�Ft(a, a†, t) = (H +�ωa†∂a†)F (a, a†, t). The
solution is given by

F (a, a†, t) =

∞
X

n=0

πn(a, a†)e−inωt.

Hint: See A. Hirshfeld and P. Henselder, Deformation quantization in the teach-
ing of quantum mechanics, Am. J. Phys. 70 (2002), 537–547.
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7.29 Proof of Theorem 7.54 on page 594. Hint: Proceed similarly to Problem 7.28.
See A. Hirshfeld and P. Henselder (2002), as above.

7.30 Proof of Theorem 7.55 on page 594. Hint: See A. Hirshfeld and P. Henselder
(2002), as above.

7.31 Weyl polynomials. Prove Proposition 7.56 on page 598. Hint: Generalize the
special argument given on page 598.

7.32 The symbol of the scattering operator. Motivate relation (7.276) on page 615,
by using the Dirac delta function.
Solution: To simplify notation, we set � = m := 1. Furthermore, choose

a(q, p) := eitp2/2, b(q, p) := symP (q, p ; t, t0), c(q, p) := e−it0p2/2.

Because of the associativity of the Moyal star product, we have to compute
(a ∗ b) ∗ c.
(I) Computation of a ∗ b. Set f(q, p) := (a ∗ b)(q, p). Choose the new notation
u := q1, v := p1, w := q2, and z := p2. By definition of the Moyal star product
(7.261) on page 607, we get

f(q, p) =
1

π2

Z

R4
e2ip(w−u)e2iv(q−w)e2iz(u−q) · eitv2/2 b(w, z) dudvdwdz.

Note that the substitution x = 2u yields

1

π

Z

R

e2iu(z−p)du =
1

2π

Z

R

eix(z−p)dx = δ(z − p).

Therefore, integration over the variable u yields

f(q, p) =
1

π

Z

R3
δ(z − p)e2ipwe2iv(q−w)e−2izq · eitv2/2 b(w, z) dvdwdz.

Using
R

R
F (z)δ(z − p)dz = F (p), we get

f(q, p) =
1

π

Z

R2
e2ipwe2iv(q−w)e−2ipq · eitv2/2 b(w, p) dvdw.

Changing the integration variables, w �→ ξ, v �→ η, we obtain

f(q, p) =
1

π

Z

R2
e2i(p−η)(ξ−q) · eitη2/2 b(ξ, p) dξdη. (7.322)

(II) Computation of f ∗ c. Set g := f ∗ c. Again by (7.261) on page 607,

g(q, p) =
1

π2

Z

R4
e2ip(w−u)e2iv(q−w)e2iz(u−q) · f(u, v)e−it0z2/2 dudvdwdz

=
1

π

Z

R3
δ(p − v)e−2ipue2ivqe2iz(u−q) · f(u, v)e−it0z2/2 dudvdz,

after integrating over w. Integration over v implies

g(q, p) =
1

π

Z

R2
e−2ipue2ipqe2iz(u−q) f(u, p)e−it0z2/2 dudz.

(III) Inserting f(u, p) from (7.322), we obtain that g(q, p) is equal to the integral
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1

π2

Z

R4
e2i(p−z)(q−u)e2i(p−η)(ξ−u)eitη2/2e−it0z2/2 b(ξ, p) dξdηdudz.

After integrating over u, we get

1

π

Z

R3
δ(z + η − 2p) e2i(p−z)q e2i(p−η)ξ eitη2/2 e−it0z2/2 b(ξ, p) dξdηdz.

Consequently, integrating over η, we obtain

g(q, p) =
1

π

Z

R2
e2i(p−z)(q−ξ) eit(z−2p)2/2 e−it0z2/2 b(ξ, p) dξdz.

This is the claim (7.276) on page 615.
7.33 The Wick theorem. Compute the moment 〈x4

1x
2
2〉 by using the Wick theorem.

Solution: To simplify notation, we write (ij) instead of 〈yiyj〉. We first compute
〈y1y2y3y4y5y6〉. This is equal to

(12)(34)(56) + (12)(35)(46) + (12)(36)(45)

+ (13)(24)(56) + (13)(25)(46) + (13)(26)(45)

+ (14)(23)(56) + (14)(25)(36) + (14)(26)(35)

+ (15)(23)(46) + (15)(24)(36) + (15)(26)(34)

+ (16)(23)(45) + (16)(24)(35) + (16)(25)(34).

Setting y1 = y2 = y3 = y4 := x1 and y5 = y6 := x2, we get

〈x4
1x

2
2〉 = 3〈x2

1〉2〈x2
2〉 + 12〈x2

1〉〈x1x2〉2.

By induction, we obtain that 〈x1x2 · · ·x2n〉 contains s(2n) summands where
s(0) := 1 and

s(2n) = (2n − 1)s(2n − 2), n = 1, 2, 3, . . .

For example, s(2) = 1, s(4) = 3, s(6) = 15, s(8) = 7 · 15 = 105.
7.34 The rescaling trick. Prove Prop. 7.48 on page 572.

Solution: Let s ≥ s0. By assumption, there exists a number s0 > 1 such that
the series ζA(s) =

P∞
n=1 λ−s

n converges. Using Euler’s gamma function

Γ (s) =

Z ∞

0

ts−1e−tdt,

we get

Γ (s)ζA(s) =

Z ∞

0

ts−1et
∞
X

n=1

λ−s
n dt.

Here, it is allowed to interchange summation with integration, by the majorant
criterion for integrals (see page 493 of Vol. I). The substitution t = λnu yields

ζA(s) =
1

Γ (s)

Z ∞

0

us−1
∞
X

n=1

e−λnudu.

Let γ > 0. Replacing A �→ γA and λn �→ γλn, we obtain

ζγA(s) =
1

Γ (s)

Z ∞

0

us−1
∞
X

n=1

e−γλnudu.
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The substitution v = γu yields

ζγA(s) =
γ−s

Γ (s)

Z ∞

0

vs−1
∞
X

n=1

e−λnvdv = γ−sζA(s).

Differentiating this with respect to s, we obtain

ζγA(s) = − ln γ · γ−sζA(s) + γ−sζ′
A(s).

After analytic continuation of the zeta function ζA, we get

ζ′
γA(0) = −ζA(0) ln γ + ζ′

A(0).

This implies the desired result

det(γA) = e−ζ′
γA(0) = γζA(0)e−ζ′

A(0) = γζA(0) det A.

7.35 Special Fourier–Laplace integrals. Let E, H ∈ R, and ε > 0. Prove the follow-
ing:

(i)
R∞
−∞ ei(E+iε)t/�e−iHt/�θ(t)dt = i�

E+iε−H
.

(ii) θ(t)e−iHt/� = i
2π

PV
R∞
−∞

e−i(E+iε)t/�

E+iε−H
dE for all t ∈ R \ {0}.

Solution: To simplify notation, set � := 1. Since limt→+∞ e−εt = 0,

Z ∞

0

eiEte−εte−iHtdt = lim
N→∞

eiEt e−εte−iHt

i(E + iε) − iH

˛

˛

˛

N

0
=

i

E + iε − H
.

In order to get the inverse transformation, we formally apply the Fourier trans-
form to (i). This yields

θ(t)e−εt e−iHt =
1

2π

Z ∞

−∞
e−iEt · i

E + iε − H
dE, t ∈ R. (7.323)

However, the crux is that this integral does not exist because of too slow decay
at infinity. Therefore, we have to argue more carefully. Observe first that the
function

f(t) := θ(t)e−εte−iHt, t ∈ R

is not smooth. This is the reason for the failing of the Fourier transform, in
the classical sense. However, since |f | is bounded, the function f is a tempered
distribution, and its Fourier transform is well defined. Thus, we may regard
equation (7.323) as a short-hand notation for the Fourier transform in the sense
of tempered distributions. To refine this argument, note that

R

R
|f(t)|2dt < ∞,

that is, f ∈ L2(R). The Plancherel theorem tells us that the Fourier transform

f(t) = lim
R→+∞

Z R

−R

e−iEt · i

E + iε − H
dE, t ∈ R

is valid in the sense of the convergence in the Hilbert space L2(R) (see page 514).
More precisely, applying the residue theorem, Cauchy’s integration method
implies that (ii) is valid for all t �= 0. Argue as in Problem 12.1 of Vol. I.
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7.36 The Fourier–Laplace transform. Prove Prop. 7.17 on page 498.
Hint: Use Problem 7.35. For interchanging limits, construct absolutely conver-
gent majorant series. To this end, observe that the inequality 2ab ≤ a2 + b2

(for real numbers a, b) yields

2|〈χ|ϕk〉〈ϕk|ϕ〉| ≤ |〈χ|ϕk〉|2 + |〈χ|ϕk〉|2.

Finally, use the Parseval equation.
7.37 Proof of Proposition 7.64 on page 642. Solution: It is convenient to use the

function

J := −
M
X

k=1

pm ln pm

which differs from I by a positive factor. (Note that log2 a = ln a · log2 e.) Since
limx→+0 x ln x = 0, the function J is continuous on the closed simplex σM . For
the partial derivatives of J on the interior of σM , we get Jpm = − ln pm − 1
and

Jpmpn = −δmn

pm
, m, n = 1, . . . , M.

Thus, the symmetric matrix (−Jpmpn) is positive definite on the interior of
σM , and hence the function −J is convex, that is, J is concave on the interior
of σM . By continuity, this remains true on σM . One checks easily that the
maximal value of J is attained at an inner point of σM . From Jpm = 0 for
m = 1, . . . , M , we get p1 = . . . = pM .
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